Loading...
Çà»çÀÇ ÁÖ¿ä ³»¿ë ¾È³»
Á¦¸ñ ¾øÀ½
Çà»çÀÇ ÁÖ¿ä ³»¿ë [Çà»ç¸íÀ» Ŭ¸¯ÇϽøé ÀÚ¼¼ÇÑ »çÇ×À» º¸½Ç ¼ö ÀÖ½À´Ï´Ù.]

³í¹® ¹ßÇ¥
Ưº° °­¿¬
ÃÊû °­¿¬
À¯¸Á°úÇбâ¼úÀÚ ¼¼¼Ç

International Session
ÁöÁ¤¾÷ü ¼¼¼Ç
¿îµ¿(µî»ê, °ñÇÁ)

Æ÷·³
ȯ¿µÆÄƼ/ÆòÀÇ¿øȸ
Á¤±âÃÑȸ/¸¸Âù
±â°è°ü·Ã ±â±â ¹× ¼­Àû Àü½Ã
Á¦6ȸ Àü±¹ ´ëÇлý À¯Ã¼°øÇÐ °æÁø´ëȸ
Á¦4ȸ Àü±¹Çлý¼³°è°æÁø´ëȸ
°ü±¤(¹®È­/»ê¾÷üÅõ¾î)

³í¹® ¹ßÇ¥ ¾È³»

³í¹®¹ßÇ¥½Åû ¿ä·É

¿Â¶óÀÎ»ó¿¡ ³í¹®Á¦¸ñ/Å°¿öµå(¿µ¹®,±¹¹®)/Abstract(¿µ¹®À¸·Î¸¸ ÀÛ¼º)/ÀúÀÚ¸í(¼Ò¼Ó,À̸ÞÀÏ Æ÷ÇÔ) ÀÔ·Â
ÃÊ·ÏÀº ÆÄÀÏ·Î Á¢¼öÇÏÁö ¾ÊÀ¸¸ç, ¿Â¶óÀÎ ÀԷ»çÇ×ÀÌ ÃÊ·ÏÁý¿¡ ¹Ý¿µµÊ.

ºñȸ¿øÀº »çÀüµî·Ï ÈÄ ¹ßÇ¥½Åû °¡´É

Full paper Á¦Ãâ ¿ä·É

÷ºÎ ³í¹®¿ø¹®¾ç½Ä¿¡ µû¸£µÇ ÷ºÎ ³í¹®¿ø¹®¾ç½Ä¿¡ µû¸£µÇ ù ¸éÀÇ ÃʷϺκбîÁö¸¸ ÁؼöÇÏ°í ÀÌÈĺÎÅÍ´Â A4¿ëÁö Å©±â¿¡ ÀÚÀ¯·Î¿î Çü½ÄÀ¸·Î ÀÛ¼º °¡´É(PPTÆÄÀÏÀ» »ðÀÔµµ °¡´É)
1. [¹ßÇ¥³í¹® Á¦Ãâ ¹× ¼öÁ¤]Ŭ¸¯
2. Á¤È¸¿ø ¶Ç´Â ºñȸ¿ø ¼±ÅÃ
3. Á¦Ãâ³í¹® ¸®½ºÆ®¿¡¼­ '³í¹®¹øÈ£' ¶Ç´Â '³í¹®Á¦¸ñ' Ŭ¸¯
3. µî·ÏµÈ Abstract °ËÅä ÈÄ ¾Æ·¡ '¼öÁ¤' Ŭ¸¯
4. ¿ø¹® ¾÷·Îµå¿¡
HwpÆÄÀÏ È¤Àº DocÆÄÀÏ ¾÷·Îµå
(´Ü, ¿ø¹® ¾÷·Îµå Àü¿¡ ¹Ýµå½Ã »çÀüµî·Ï °áÀ縦 ¿Ï·áÇÏ¼Å¾ß ÇÕ´Ï´Ù.)

Full paper ÀÛ¼º ¿ä·É

[³í¹®¿ø¹®¾ç½Ä.doc ´Ù¿î·Îµå] / [³í¹®¿ø¹®¾ç½Ä.hwp ´Ù¿î·Îµå]
ºÐ ·® : ¹Ýµå½Ã 6¸é(±×¸² ¹× Ç¥ µî Æ÷ÇÔ) À̳»·Î ÀÛ¼º¿ä¸Á
ÆÄÀÏÁ¾·ù : HWP ȤÀº DOC Á¦Ãâ (³í¹®Á¦Ãâ ¼­Ã¼ Á¤µ· ¿ä¸Á)
÷ºÎ ³í¹®¿ø¹®¾ç½Ä¿¡ µû¸£µÇ ù ¸é¸¸ ÁؼöÇÏ°í, ´ÙÀ½ ¸éºÎÅÍ´Â A4¿ëÁö Å©±â¿¡ ÀÚÀ¯·Î¿î Çü½ÄÀ¸·Î ÀÛ¼º °¡´É




¹ßÇ¥½Åû : ~9¿ù 11ÀÏ(¸ñ) 22ÀÏ(¿ù)
¹ßÇ¥ÀÚ »çÀüµî·Ï ±â°£ : ~9¿ù
18ÀÏ(¸ñ) 22ÀÏ(¿ù)* 22ÀÏ ÀÌÈÄ Á¦¸ñ,ÀúÀÚ,ÃÊ·Ï,Å°¿öµå ¼öÁ¤ºÒ°¡
¹ßÇ¥³í¹® Á¦Ãâ : ~9¿ù
18ÀÏ(¸ñ) 22ÀÏ(¿ù)
¼öÁ¤ÆÄÀÏ Á¦Ãâ ¸¶°¨ : 10¿ù 8ÀÏ(¼ö)

¹ßÇ¥½Åû ±â°£ : ¿ÞÂÊÀÇ [¹ßÇ¥³í¹® Á¦Ãâ ¹× ¼öÁ¤] ¸Þ´º Ŭ¸¯

³í¹®¹ßÇ¥ ¹æ¹ý

¹ßÇ¥ÀÚÀÇ Èñ¸Á¿¡ µû¶ó ±¸µÎ¹ßÇ¥¿Í Æ÷½ºÅ͹ßÇ¥·Î ³ª´©´Â °ÍÀ» ¿øÄ¢À¸·Î Çϳª, ¹ßÇ¥³í¹® Á¢¼ö ÈÄ, ±¸µÎ¹ßÇ¥ÀÚ°¡ ¿¹»óº¸´Ù ¸¹À» ¶§¿¡´Â Çà»çÀÇ ¿øÈ°ÇÑ ¿î¿µÀ» À§ÇÏ¿© Á¶Á÷À§¿øȸ¿¡¼­ ±¸µÎ ¶Ç´Â Æ÷½ºÅÍ ¹ßÇ¥ ¿©ºÎ¸¦ °áÁ¤ÇÒ ¿¹Á¤ÀÓ.

* ¹ßÇ¥ÀÚ´Â ¹Ýµå½Ã »çÀüµî·ÏÀ» ¿Ï·áÇØ¾ß ÇÔ.
* ±¸µÎ ¶Ç´Â Æ÷½ºÅÍ ¹ßÇ¥½Ã °øµ¿ÀúÀÚÀÇ Âü¼®À» ¿øÄ¢À¸·Î ÇÔ.

¹ßÇ¥¾È³» : ¨ç ±¸ µÎ ¹ß Ç¥ - 15ºÐ(¹ßÇ¥ 12ºÐ, ÁúÀÇ 3ºÐ) (¿¹Á¤)
- ¹ßÇ¥Àå¿¡ Beam Projector ¹× ³ëÆ®ºÏPC´Â ÁغñµÇ¾î ÀÖÀ¸³ª, ¹ßÇ¥ÀÚÀÇ ¹ßÇ¥Àڷκ° ÇÁ·Î±×·¥ ȣȯ¼º ¹®Á¦µîÀÌ ¹ß»ýÇÒ ¼ö ÀÖÀ¸¹Ç·Î º»ÀÎ ³ëÆ®ºÏ PCÁöÂü ¿ä¸Á!
- ÇØ´ç ¼¼¼Ç ½ÃÀÛ 10ºÐÀü±îÁö ¹ßÇ¥Àå¿¡ µµÂø ÈÄ ÁÂÀå²² ¾Ë¸²

¨è Æ÷½ºÅ͹ßÇ¥ - 50ºÐ
- ÁöÁ¤µÈ Æгο¡ ÁغñµÈ Æ÷½ºÅÍ ºÎÂø

[ Æ÷½ºÅ͹ßÇ¥¹æ¹ý.hwp, Æ÷½ºÅ͹ßÇ¥¹æ¹ý.pdf, Æ÷½ºÅ͹ßÇ¥¹æ¹ý.zip ]
- ÇØ´ç ¼¼¼Ç ½ÃÀÛ 20ºÐ Àü±îÁö Æ÷½ºÅÍ ºÎÂø ÈÄ ÁÂÀå²² ¾Ë¸²

¨é °­ ¿¬ - 30ºÐ (¿¹Á¤)

³í¹®ÀÇ ½É»ç ¹× ¹ßÇ¥ ½ÂÀÎ

¨ç ÇÐȸ ÅÛÇø´ »ç¿ë ¿©ºÎ, ³í¹®ÀÇ ±ÔÁ¤¾ç½Ä Áؼö ¹× ³»¿ë µîÀ» ½É»çÇÏ¿© äÅÃµÈ ³í¹®¿¡ ÇÑÇÏ¿© Çмú´ëȸ °ÔÀç ¹× ¹ßÇ¥¸¦ ½ÂÀÎ(E-mail °á°úÅ뺸)
¨è Çмú´ëȸÀÇ ¹ßÇ¥ ¼¼¼Ç ¹× ³í¹®ÀÇ ½É»ç, ¼±Á¤ µîÀº Á¶Á÷À§¿øȸ Ã¥ÀÓÇÏ¿¡ ÁøÇà

Ưº°¼¼¼Ç ³í¹®

¨ç 1°³ ¼¼¼ÇÀÌ 4~5Æí Á¤µµÀÇ ³í¹®À¸·Î ±¸¼ºµÇµµ·Ï ¸ð¾Æ¼­ Á¦Ãâ
¨è ¼¼¼Ç¸í, ¼¼¼Ç Ã¥ÀÓÀÚ(¼Ò¼Ó,¿¬¶ôó), ÁÂÀå(¼Ò¼Ó, ¿¬¶ôó), ±¸¼º³í¹® Á¦¸ñ(¹ßÇ¥ÀÚ)À» Àû¾î ÇØ´ç ºÎ¹®¿¡ ½Åû
¨é µ¿ ³í¹®µµ ÀÏ¹Ý³í¹®ÀÇ Á¦ÃâÀÏÁ¤(10¿ù
18ÀÏ 22ÀÏ(¿ù)/ 10¿ù 28ÀÏ)¿¡ µû¶ó ÇÐȸ¿¡ Á¢¼öÇÏ¿© ½É»ç, ¹ßÇ¥ ½ÂÀÎ µî ÀýÂ÷¸¦ ¹â¾Æ¾ß ÇÔ

Ưº°°­¿¬ ¾È³»

Ưº°°­¿¬ [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

¿¬»ç(¼Ò¼Ó/Á÷À§)

Á¦¸ñ

ÀÌ»óõ(±¹°¡°úÇбâ¼ú¿¬±¸È¸/ÀÌ»çÀå)

¿Ö À¶ÇÕ¿¬±¸Àΰ¡?

°­¿¬ÃÊ·Ï

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬01


¿Ö À¶ÇÕ¿¬±¸Àΰ¡?

ÀÌ»óõ¢Ó(±¹°¡°úÇбâ¼ú¿¬±¸È¸)

¸ñÂ÷ :
       ¥°. À¶ÇÕ¿¬±¸ÀÇ Çʿ伺
       ¥±. À¶ÇÕ¿¬±¸ ÃßÁøÇöȲ°ú °úÁ¦
       ¥². ±¹°¡°úÇбâ¼ú¿¬±¸È¸ À¶ÇÕ¿¬±¸ È°¼ºÈ­ ¹æ¾È

¿¬»ç ¼Ò°³ ÀÌ»óõ ÀÌ»çÀå

¡Ü ÇÐ ·Â :  
¼­¿ï´ëÇб³ ±â°è°øÇÐ (¡¯74 Çлç)
KAIST ±â°è°øÇÐ (¡¯76 ¼®»ç)
Northwestern University ±â°è°øÇÐ (¡¯83 ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â :
1976~2007   ¿µ³²´ë ±â°è°øÇаú ±³¼ö
1995~2000   ¿µ³²´ë ±¹Ã¥Áö¿ø»ç¾÷´ÜÀå, °ø°ú´ëÇÐÀå
2001~2003   ±¹°¡°úÇбâ¼úÀ§¿øȸ À§¿ø
2001~2005   °æºÏÅ×Å©³ëÆÄÅ© ÀÌ»çÀå
2001~2005   ¿µ³²´ë ÃÑÀå
2003~2005   ´ëÅë·ÉÀÚ¹® Á¤Ã¥±âȹÀ§¿ø, ´ëÅë·ÉÁ÷¼Ó ±¹°¡±ÕÇü¹ßÀüÀ§¿øȸ ÀÚ¹®À§¿ø
2005        Çѱ¹»ê¾÷´ÜÁö°ø´Ü â¿øÇõ½ÅŬ·¯½ºÅÍÃßÁø´ÜÀå
2006        Çѱ¹°úÇбâ¼ú±âȹÆò°¡¿ø(KISTEP) ÀÌ»ç
2008~2011   Çѱ¹±â°è¿¬±¸¿ø ¿øÀå
2008        ¿ï»ê°úÇбâ¼ú´ë ÀÌ»ç
2014.6.30~ÇöÀç  ±¹°¡°úÇбâ¼ú¿¬±¸È¸ ÀÌ»çÀå

¡Ü ¼ö»ó³»¿ª :
2001        ´ëÅë·Éǥâ
2003        Ä¯º¸µð¾Æ ±¹°¡Àç°ÇÈÆÀå ±ÝÀå
2004        Ã¼À°ÈÆÀå ¸ÍÈ£Àå
2008        Ã»Á¶±ÙÁ¤ÈÆÀå

ÃÊû°­¿¬ ¾È³»

ÃÊû°­¿¬ [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

ºÎ¹®

¿¬»ç(¼Ò¼Ó)

Á¦¸ñ

CAE ¹× ÀÀ¿ë¿ªÇÐ

ÀÌÅÂÈñ(ÇѾç´ëÇб³)

Å©¸®±ë ´ëü¸ðµ¨ ±â¹Ý ¼øÂ÷Àû ÃÖÀûÈ­

ÇѺ´±â(È«ÀÍ´ëÇб³)

µ¿Àû Àüº¹ ¾ÈÀü¹× Çؼ®Àû Á¢±Ù

ÀåÇѱâ(µÎ»êÁß°ø¾÷)

Á¦Ç° °³¹ß °úÁ¤¿¡¼­ CAEÀÇ È°¿ëµµ Á¦°í ¹æÇâ

µ¿¿ªÇÐ ¹× Á¦¾î

±è´ëÇö(ÀÎÇÇ´ÏƼ¹ÂÁ÷)

KPOP Á¦ÀÛ¿¡ Àû¿ëµÈ ´Ù¾çÇÑ À½ÇâÇÐÀÇ ¿ø¸®µé

»ý»ê ¹× ¼³°è°øÇÐ

ÀÌ»óÈÆ(»ï¼ºÀüÀÚ)

½ÃÀå°ú ±â¼úÀÇ ÇÑ°èµ¹Æĸ¦ À§ÇÑ °³¹ßÀÇ ¿ªÇÒ

±èÁØ¿Ï(µ¿°æ°ø´ë)

High Output Power Micropump by Electro-Conjugate Fluid and its Applications

¿­°øÇÐ

±èº´¼ø(LGÀüÀÚ)

°øÁ¶»ê¾÷ÀÇ ¹Ì·¡Áغñ

À¯Ã¼°øÇÐ

¼ºÇüÁø(KAIST)

Large-scale motions in wall-bounded turbulent flows

¿¡³ÊÁö ¹× µ¿·Â°øÇÐ

°­¼®Ã¶(»ï¼ºÅ×Å©À©)

LNG¿ë Åͺ¸±â±â °³¹ß ÇöȲ ¹× Àü¸Á

½Å·Ú¼º

¾ç°æ¿ì(±¹¹æ±â¼úÇ°Áú¿ø)

±º¼öÇ° ½Å·Ú¼º º¸Àå ½ÇÅ ¹× ÇâÈÄ ¹ßÀü¹æÇâ

¹ÙÀÌ¿À°øÇÐ

¹ÚÈÆö(°Ç±¹´ëÇб³)

Àå¼ödzµ­ÀÌ ¸ð¹æ ³¯°¹Áþ ÃʼÒÇü ºñÇàü ¿¬±¸

¸¶ÀÌÅ©·Î/³ª³ë°øÇÐ

Á¶»óÁØ
((ÁÖ)Park Systems)

The Mechanical Design and Requirements of AFM for Quantitative Critical Dimension Nano-Metrology

ITÀ¶ÇÕ

È«µ¿Ç¥(Çѱ¹¿¬±¸Àç´Ü)

2014 Çѱ¹¿¬±¸Àç´Ü ±âÃÊ¿¬±¸»ç¾÷ °³¿ä ¹× ÇöȲ

±³À°

±è¿µ¼®
(¼­¿ï°úÇбâ¼ú´ëÇб³)

»õ·Î¿î °øÇб³À°¹æ½ÄÀ¸·Î¼­ "ÀüÇб⠼³°è±â¹Ý ÇнÀ"ÀÇ Á¦¾È

°­¼ºÁß(°Ç±¹´ëÇб³)

âÀǼºÀ» À§ÇÑ °øÇаú µðÀÚÀÎÀÇ ÅëÇÕÀû ±³À° ¹æ¾È

°­¿¬ÃÊ·Ï

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬01


Å©¸®±ë ´ëü¸ðµ¨ ±â¹Ý ¼øÂ÷Àû ÃÖÀûÈ­

ÀÌÅÂÈñ¢Ó(ÇѾç´ëÇб³)

Abstract : Á¦Ç° ¼³°èÀÇ Ç°Áú Çâ»ó ¹× °³¹ß½Ã°£ ´ÜÃàÀ» À§ÇÏ¿© ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼DZâ¹Ý ¼³°è°¡ °¢±¤À» ¹Þ°í ÀÖ´Ù. µû¶ó¼­ ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ÇÀÇ Á¤È®µµ Çâ»ó°ú Çؼ®½Ã°£ ´ÜÃàÀÌ ÇÊ¿äÇϳª Çؼ®ÀÇ Á¤È®µµ°¡ Çâ»óµÉ¼ö·Ï ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨Àº º¹ÀâÇØÁö°í Çؼ®½Ã°£Àº Áõ°¡ÇÏ°Ô µÈ´Ù. ƯÈ÷ ÃÖÀû¼³°è °úÁ¤¿¡¼­´Â ¸¹Àº Ƚ¼öÀÇ Çؼ®ÀÌ ¿ä±¸µÇ°í Àֱ⠶§¹®¿¡ Çؼ®½Ã°£ÀÇ ´ÜÃàÀÌ ¸Å¿ì ÇÊ¿äÇÏ´Ù. À̸¦ ÇØ°áÇϱâ À§ÇØ ÀԷº¯¼ö¿Í ÀÀ´äÇÔ¼öÀÇ °ü°è¸¦ ¼±ÇàÇнÀÀ» ÅëÇÏ¿© µµÃâÇÏ¿© »õ·Î¿î ÀÔ·ÂÁ¡¿¡¼­ ÀÀ´äÀ» ºü¸£°í Á¤È®ÇÏ°Ô ±Ù»çÀûÀ¸·Î ¿¹ÃøÇÒ ¼ö ÀÖ´Â ´ëü¸ðµ¨ÀÌ ´ë¾ÈÀ¸·Î °³¹ßµÇ¾ú´Ù. ÀÌ·± ´ëü¸ðµ¨Àº ¼±ÇàÇнÀÀ» À§ÇÑ ½ÇÇèÁ¡À» ¼±ÅÃÇÏ´Â ¹æ¹ýÀÎ ½ÇÇè°èȹ (design of experiments)°ú ÀԷº¯¼ö-ÀÀ´ä°ª °ü°è¸¦ °áÁ¤ÇÏ´Â ´ëü¸ðµ¨ (surrogate model), Á¤È®µµ ¿¹ÃøÀ» À§ÇÑ °ËÁõ¹ý (validation)µîÀÌ ÇÊ¿äÇÏ´Ù. ´ëü¸ðµ¨ ±â¹Ý ¼øÂ÷Àû ÃÖÀûÈ­´Â ÃÖ¼Ò °³¼öÀÇ ÀÔ·ÂÁ¡À¸·Î ÀûÁ¤ Á¤È®µµ¸¦ °®´Â ´ëü¸ðµ¨À» ±¸¼ºÇÏ°í ÀÌ ´ëü¸ðµ¨ÀÇ ÃÖÀûÁ¡À» ã¾Æ ¿ø·¡ ÃÖÀûÈ­¹®Á¦ÀÇ ÃÖÀûÁ¡À» ºü¸£°Ô ±¸ÇÏ´Â °ÍÀÌ ¸ñÀûÀÌ´Ù. À̸¦ À§ÇÏ¿© ½ÇÇèÁ¡À» ¼øÂ÷ÀûÀ¸·Î Ãß°¡ÇÏ¿© ´ëü¸ðµ¨ÀÇ Á¤È®µµ¸¦ Áõ°¡½ÃÅ°¸é¼­ ÃÖÀûÁ¡À» È¿°úÀûÀ¸·Î ã¾Æ°¡´Â ¡®´ëü¸ðµ¨ ±â¹Ý ¼øÂ÷Àû ÃÖÀûÈ­ ¹æ¹ý¡¯ÀÌ ´Ù¾çÇÏ°Ô ¿¬±¸µÇ¾ú´Ù. º» °­¿¬Àº ´ëü¸ðµ¨ Áß °¡Àå Àß ¾Ë·ÁÁø Å©¸®±ë ´ëü¸ðµ¨ ±â¹Ý ¼øÂ÷Àû ÃÖÀûÈ­ ±â¹ýÀ¸·Î ºñÁ¦¾à ÃÖÀûÈ­¸¦ À§ÇØ °³¹ßµÈ EGO (efficient global optimization), Á¦¾à ÃÖÀûÈ­¸¦ À§ÇÑ SuperEGO µîÀÇ °³³ä ¹× Ãß°¡½ÇÇèÁ¡ ¼±Åà ±âÁØ, ÃÖÀûÈ­ °úÁ¤ µîÀ» ¼Ò°³ÇÑ´Ù. À̸¦ ±â¹ÝÀ¸·Î Å©¸®±ë ´ëü¸ðµ¨ ±â¹Ý ¼øÂ÷Àû ÃÖÀûÈ­ÀÇ ¹ßÀü ¹æÇâÀ» Á¦¾ÈÇÑ´Ù.

¿¬»ç ¼Ò°³ ÀÌÅÂÈñ ±³¼ö

¡Ü ÇѾç´ëÇб³ °ø°ú´ëÇÐ ¹Ì·¡ÀÚµ¿Â÷°øÇаú ±³¼ö
¡Ü ÇѾç´ëÇб³¸¦ Á¹¾÷ÇÏ°í Çѱ¹°úÇбâ¼ú¿ø¿¡¼­ ¼®»çÇÐÀ§¸¦ ¹Þ¾ÒÀ¸¸ç, (¹Ì) ¾ÆÀÌ¿À¾Æ´ëÇб³¿¡¼­ Arora±³¼ö´ÔÀÇ ÁöµµÇÏ¿¡ ¼³°è¹Î°¨µµÇؼ®À¸·Î ¹Ú»çÇÐÀ§¸¦ ¹Þ¾Ò´Ù. Á¹¾÷ ÈÄ ¾ÆÀÌ¿À¾Æ´ëÇб³¿¡¼­ °âÀÓ±³¼ö¸¦ ¿ªÀÓÇÏ¿´´Ù. ÀϺ» °úÇÐÁøÈï¿ø (JSPS)ÀÇ ¹Ú»çÈÄ°úÁ¤À¸·Î µ¿°æÀü±â´ëÇп¡¼­ °­ÀÇ ¹× ¿¬±¸¸¦ ÇÏ¿´´Ù. 1994³âºÎÅÍ ¿µ³²´ëÇб³ ±â°è°øÇкο¡¼­ Á¶±³¼ö·Î ÀçÁ÷ÇÏ¿´°í, 1997³âºÎÅÍ ÇѾç´ëÇб³ ±â°è°øÇкο¡¼­ Á¶±³¼ö, ºÎ±³¼ö, ±³¼ö·Î ÀçÁ÷ÇÏ¿´À¸¸ç, ÇöÀç ¹Ì·¡ÀÚµ¿Â÷°øÇаú ±³¼ö·Î ÀçÁ÷ ÁßÀÌ´Ù.
¡Ü ´ëÇѱâ°èÇÐȸ ÆòÀÇ¿ø, Çмú´ëȸ Á¶Á÷À§¿ø, Æ÷»óÀ§¿ø, JMST ºÎÆíÁýÀÎ, CAE ¹× ÀÀ¿ë¿ªÇкι® ȸÀå µîÀ» ¿ªÀÓÇÏ¿´À¸¸ç, 2013³âµµ ´ëÇѱâ°èÇÐȸ Çмú»óÀ» ¼ö»óÇÏ¿´´Ù. ¿¬±¸ °ü½É ºÐ¾ß´Â ÃÖÀû¼³°è, Àü»ê½ÇÇè°èȹ, ´ëü¸ðµ¨, ½Å·Ú¼º±â¹Ý ÃÖÀû¼³°è µîÀÌ´Ù.

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬02


µ¿Àû Àüº¹ ¾ÈÀü¹× Çؼ®Àû Á¢±Ù

ÇѺ´±â¢Ó(È«ÀÍ´ëÇб³)

Abstract : ÀÚµ¿Â÷ »ç°í¿¡¼­ Àüº¹»ç°íÀÇ À¯Çü ¹× Àüº¹ ¾ÈÀüÀ» È®º¸Çϱâ À§ÇÑ ¿©·¯ Á¶Ä¡µéÀ» ¼Ò°³Çϸç, ÀÌ¿¡ °ü·ÃµÈ ¿¬±¸¸¦ ¼Ò°³ÇÔ. ¶ÇÇÑ ÀÌ·¯ÇÑ ¹®Á¦¿¡ CAEÇؼ®À¸·Î Á¢±ÙÇÑ °á°ú¸¦ ¼Ò°³ÇÔ. »ç¿ë ¼ÒÇÁÆ®¿þ¾î´Â ADAMSÀÌÁö¸¸ º¯ÇüÀ» °í·ÁÇÑ Çؼ® »ç·Ê¸¦ ¼Ò°³ÇÔ.

¿¬»ç ¼Ò°³ ÇѺ´±â ±³¼ö

¡Ü ÇÐ ·Â ¿¬¼¼´ëÇб³ ±â°è°øÇаú('74 Çлç, '78 ¼®»ç, '85¹Ú»ç)
¡Ü ÁÖ¿ä°æ·Â È«ÀÍ´ëÇб³ °ø´ë ±³¼ö(80-ÇöÀç), GIT ±³È¯±³¼ö(89-91), È«ÀÍ´ëÇб³ Á¤º¸Àü»ê¿ø ¿øÀå(95-99), Uni. of Monash(È£ÁÖ) ±³È¯±³¼ö(99-00), È«ÀÍ´ëÇб³ °úÇбâ¼ú¿¬±¸¼Ò ¼ÒÀå(02-04), ´ëÇѱâ°èÇÐȸ CAE ¹× ÀÀ¿ë¿ªÇкι® ȸÀå(05-06), È«ÀÍ´ëÇб³ °ø°ú´ëÇÐ ÇÐÀå(04-06), È«ÀÍ´ëÇб³ °ø°ú´ëÇÐ ´ëÇпø ¿øÀå(08-10), ±¹ÅäºÎ Á¦ÀÛ°áÇÔ À§¿øȸ À§¿øÀå(11-ÇöÀç)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬03


Á¦Ç° °³¹ß °úÁ¤¿¡¼­ CAEÀÇ È°¿ëµµ Á¦°í ¹æÇâ

ÀåÇѱâ¢Ó(µÎ»êÁß°ø¾÷)

Abstract : CAE´Â Áö³­ ¼ö½Ê ³â µ¿¾È ¸Å¿ì ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Á¦Ç°°³¹ß¿¡ È°¿ëµÇ¸é¼­ ¾öû³­ ±â¿©¸¦ ÇØ¿Ô°í, ±× Á¤È®µµ³ª È°¿ë ¹æ¹ý Ãø¸é¿¡¼­ ³ª³¯ÀÌ °íµµÈ­µÇ°í ÀÖ´Ù. ¼³°è ´Ü°èºÎÅÍ ½ÃÇè °ËÁõ ´Ü°è¿¡ À̸£±â±îÁö CAE ´Â Á¦Ç°°³¹ß¿¡ À־ ¾ø¾î¼­ ¾ÈµÉ Áß¿äÇÑ Tool ·Î ÀÚ¸® Àâ¾ÒÁö¸¸, ÇöÀå¿¡¼­ Á¦Ç° °³¹ß °úÁ¤À» º¸¸é ¿©ÀüÈ÷ ¿©·¯ °¡Áö ¼÷Á¦°¡ ³²¾Æ ÀÖ´Ù. ´Ù¾çÇÑ CAE ±â¹ýµéÀÌ Á¢¸ñµÇ¸é¼­ Á¦Ç° °³¹ß ÇÁ·Î¼¼½º´Â °íµµÈ­µÇ°í ÀÖÁö¸¸, ½ÃÀå¿¡ Ãâ½ÃµÈ ÃÖÁ¾ Á¦Ç°¿¡¼­´Â ¿©ÀüÈ÷ ¿©·¯ °¡Áö ¹®Á¦Á¡ÀÌ ³ªÅ¸³ª°í ÀÖ´Ù. º» ¹ßÇ¥¿¡¼­´Â Á¦Ç°°³¹ß °úÁ¤À̳ª ÃÖÁ¾ Á¦Ç°¿¡¼­ ³ªÅ¸³ª´Â ¹®Á¦Á¡µé·ÎºÎÅÍ Ãâ¹ßÇؼ­ Á¦Ç°°³¹ß ÇÁ·Î¼¼½º¿¡¼­ °ú¿¬ ¾î¶² ºÎºÐÀÌ °³¼±µÇ¾î¾ß ÇÏ´ÂÁö¿¡ ´ëÇØ °íÂûÇغ¸¾Ò´Ù. ±×¸®°í ÃÖÁ¾ Á¦Ç°ÀÇ ¿Ï¼ºµµ¸¦ ³ôÀÌ´Â Ãø¸é¿¡¼­CAE¸¦ º¸´Ù È¿À²ÀûÀ¸·Î È°¿ëÇϱâ À§ÇÑ ¹æÇ⼺À» Á¦¾ÈÇÏ°íÀÚ ÇÑ´Ù.

¿¬»ç ¼Ò°³ ÀåÇѱ⠻ó¹«

¡Ü ÇÐ ·Â ¼­¿ï´ë °ø´ë ±â°è¼³°è°øÇаú('87 Çлç) KAIST±â°è°øÇаú('94 ¹Ú»ç)
¡Ü ÁÖ¿ä°æ·Â KAIST À§ÃË¿¬±¸¿ø(94), °íµî±â¼ú¿¬±¸¿ø(95-99, 01-07), ´ë¿ìÀÚµ¿Â÷(00-01), ¾ÆÁÖ´ëÇб³ °âÀÓ±³¼ö(00-06), µÎ»êÀÎÇÁ¶óÄÚ¾î »ó¹«(07-ÇöÀç)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬04


KPOP Á¦ÀÛ¿¡ Àû¿ëµÈ ´Ù¾çÇÑ À½ÇâÇÐÀÇ ¿ø¸®µé

±è´ëÇö¢Ó(ÀÎÇÇ´ÏƼ¹ÂÁ÷)

Abstract : ¸¹Àº °øÇÐÀûÀÎ ¿ø¸®µéÀÌ ´ëÁßÀ½¾ÇÀÇ Á¦ÀÛÇöÀå¿¡¼­µµ »ç¿ëµÇ°í ÀÖ´Ù. »ó¾÷ÀûÀÎ ÆǸŸ¦ À§ÇÑ À½¿ø Á¦ÀÛÀ» À§Çؼ­ ¼Ò¸®¸¦ µðÀÚÀÎÇؼ­ ÇÕ¼ºÇÏ¸ç ¸ñ¼Ò¸®¿Í ¾Ç±â¼Ò¸®¸¦ ³ìÀ½Çϸç ÀÌ·¸°Ô ¸¸µé¾îÁø ¼Ò¸®ÀÇ ÆÄÇüÀ» ºÐ¼®ÇÏ¿© µè±â ÁÁÀº ¼Ò¸®·Î °¡°øÇØ °¡´Âµ¥ ÀÌ·¯ÇÑ °úÁ¤ ¼Ó¿¡ ´Ù¾çÇÑ °øÇÐÀû À̷аú ¿ø¸®µéÀÌ ¼û¾îÀÖ´Ù. ¶ÇÇÑ °ø¿¬ÇöÀå¿¡¼­µµ °ü°´¿¡°Ô ÁÁÀº ¼Ò¸®¸¦ ¼­ºñ½ºÇϱâ À§ÇÏ¿© °ø¿¬Àå¿¡¼­ÀÇ °ø°£À½ÇâÇаú À½Çâ½Ã½ºÅÛÀÇ ÀüÀÚÀ½ÇâÇÐÀÇ ¸¹Àº À̷еéÀÌ Àû¿ëµÇ°í ÀÖ´Ù. º» ³í¹®¿¡¼­´Â ÀÌ·¯ÇÑ ´ëÁßÀ½¾ÇÀÇ Á¦ÀÛÇöÀå ¼Ó¿¡¼­ »ç¿ëµÇ´Â ´Ù¾çÇÑ À½ÇâÇÐÀû ¿ø¸®¿¡ ´ëÇÏ¿© ½ÇÁ¦ ¿¹¸¦ µé¾î°¡¸ç ±¸Ã¼ÀûÀ¸·Î ¾Ë¾Æº¸°íÀÚ ÇÑ´Ù.

¿¬»ç ¼Ò°³ ±è´ëÇö ´ëÇ¥

¡Ü ÇÐ ·Â ¼­¿ï´ë °ø´ë ±â°è¼³°èÇаú('90 °øÇлç), ¼­¿ï´ë °ø´ë ±â°è¼³°èÇаú('92 °øÇм®»ç), ¼­¿ï´ë °ø´ë ±â°è¼³°èÇаú('00 °øÇйڻç), ¹Ì±¹ ¹öŬ¸®À½´ë À½¾Ç ÇÁ·Î´ö¼Ç/¿£Áö´Ï¾î¸µ Àü°ø, Music Production & Engineering at Berklee College of Music('04 À½¾ÇÇлç), ¹Ì±¹ ´º¿å´ëÇб³(NYU) ±³À°´ëÇпø ¹ÂÁ÷Å×Å©³î·¯Áö Àü°ø, Music Technology Program, Steinhardt School of Education at NYU ('06 ±³À°Çм®»ç)
¡Ü ÁÖ¿ä°æ·Â ¼­¿ï´ëÇб³ ÀÚµ¿È­½Ã½ºÅÛ °øµ¿¿¬±¸¼Ò ÆÄƮŸÀÓ ¿¬±¸¿ø(92-95), ¼­¿ï´ëÇб³ °øÇבּ¸¼Ò ÆÄƮŸÀÓ ¿¬±¸¿ø(95-97), (ÁÖ)»ï¼ºÀüÀÚ ÀüÀÓ¿¬±¸¿ø(97-00), ¹Ì±¹ ¹öŬ¸®À½´ë ÆÄƮŸÀÓ Á÷¿ø (À½ÇâÀåºñ¿î¿ëÆÀEquipment Maintenance Part in Physical Plant), ¹Ì±¹ º¸½ºÅæ M7B5 ½ºÆ©µð¿À ÀüÀÓ »ç¿îµå ¿£Áö´Ï¾î (00-04), ¹Ì±¹ Amos Production ÀüÀÓ »ç¿îµå ¿£Áö´Ï¾î(04-06), Çѱ¹¿¹¼úÁ¾ÇÕÇб³ ¹ÂÁ÷Å×Å©³î·ÎÁö ´ëÇпø °­ÀÇ(06-11), ÇѾç´ëÇб³ ´º¹Ìµð¾î ´ëÇпø °­ÀÇ(07-09), µ¿±¹´ëÇб³ ¿µÈ­¿µ»óÁ¦ÀÛ ´ëÇпø °­ÀÇ(09-ÇöÀç)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬05


½ÃÀå°ú ±â¼úÀÇ ÇÑ°èµ¹Æĸ¦ À§ÇÑ °³¹ßÀÇ ¿ªÇÒ

ÀÌ»óÈÆ¢Ó(»ï¼ºÀüÀÚ)

Abstract : ±Þº¯ÇÏ´Â ½ÃÀåÀÇ ´ÏÁ ÀνÄÇÏ°í ±×¿¡ ´ëÀÀÇϱâ À§Çؼ­´Â °³¹ß ÀÏÁ¤ ´ÜÃà ´É·ÂÀ» °®Ãß°í Á¦Ç°ÀÇ Â÷º°È­¿Í À̸¦ ±¸ÇöÇÏ´Â ±â¼ú·ÂÀÌ ÇÊ¿äÇÏ´Ù. ÀÌ·± ½ÃÀå»óȲ¿¡ ´ëÀÀÇϱâ À§Çؼ­ °æÀï»ç¿ÍÀÇ Â÷º°È­, ¿ø°¡ °æÀï·Â µîÀ» °³¹ß ´Ü°è¿¡¼­ºÎÅÍ ¾ÆÀ̵ð¾î ¹× ¾ç»ê±â¼úÀ» È®º¸ÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù. ³ÃÀå°í µð½ºÇ÷¹À̺ÎÀÇ °æ¿ì ÇöÀç±îÁö °íÁ¤°ü³äó·³ LCD¸¦ È°¿ëÇÏ¿´À¸³ª ¹Ì¼¼ Ȧ ±¸Çö °¡°ø±â¼ú°ú Àü¿ë Àåºñ °³¹ß·Î ±â¼ú °ÝÂ÷ ¹× Á¦Ç° °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿´½À´Ï´Ù. Á¦Ç° ±â´ÉÀûÀ¸·Î Æò»ó½Ã¿¡´Â À°¾ÈÀ¸·Î ½Äº°Çϱ⠾î·Á¿ï Á¤µµ·Î ¹Ì¼¼È¦ÀÌ º¸ÀÌÁö ¾Ê°í ³ÃÀå°í ¹®À» ¿­°Å³ª ÇÊ¿äÇÒ °æ¿ì Á¤º¸°¡ µð½ºÇ÷¹ÀÌµÉ ¼ö ÀÖ´Â ¾ÆÀ̵ð¾î¸¦ Àû¿ëÇÑ ÇÙ½É ±â¼úµîÀÔ´Ï´Ù. ³ÃÀå°í Á¦Ç°¿¡´Â óÀ½ Àû¿ëÇÏ´Â °ø¹ýÀ¸·Î¼­ Á¦Ç° ±âȹ¿¡¼­ºÎÅÍ ¾ç»êÈ­ÇÒ ¼ö ÀÖ´Â ±â¼ú·Â È®º¸ ¶ÇÇÑ Àúºñ¿ë °íÀÓ±Ý ½ÃÀå¿¡ ´ëÀÀÇϱâ À§Çؼ­´Â ±âȹºÎÅÍ »ý»ê±îÁö ¸ðµç °³¹ß ´Ü°èÀÇ ÀÚµ¿È­/¹«ÀÎÈ­¸¦ Àû¿ëÇÏ¿© ½º¸¶Æ®ÇÑ »ý»ê ½Ã½ºÅÛÀ» ±¸ÃàÇØ¾ß ÇÑ´Ù. ±âÁ¸¿¡´Â ¼öÀÛ¾÷À¸·Î ÁøÇàµÇ´ø Á¦Ç° Loading/Unloading ¹× À̼ÛÀ» ±âȹ ´Ü°è¿¡¼­ºÎÅÍ Àü¿ë ¹«ÀÎÀÚµ¿ÀåÄ¡ Àû¿ëÀ» °í·ÁÇÏ¿© ±âÁ¸´ëºñ »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ¾ú´ø °Íó·³ Àü °øÁ¤¿¡ ´ëÇÑ ÀÌÇظ¦ ¹ÙÅÁÀ¸·Î °³¹ßÀÌ µÇ¾î¾ß¸¸ ÇöÀç½ÃÀå ÇѰ踦 µ¹ÆÄÇÏ¿© »ì¾Æ³²À» ¼ö ÀÖ´Ù. º» °­¿¬¿¡¼­´Â ÇöÀç ½ÃÀåÀÇ »óȲ°ú ±×¿¡ ´ëÀÀÇϱâ À§ÇÑ ±â¼ú°ú Àû¿ë»ç·Ê¸¦ ÅëÇØ °³¹ßÀÇ ¿ªÇÒÀ» ¼Ò°³ÇÏ°íÀÚ ÇÑ´Ù.

¿¬»ç ¼Ò°³ ÀÌ»óÈÆ Àü¹«

¡Ü 1990 »ï¼ºÀüÀÚ ¿µ»óµð½ºÇ÷¹ÀÌ(VD) ÀÔ»ç
¡Ü 2008 '08³â ÀÚ¶û½º·¯¿î »ï¼ºÀλó ±â¼ú»ó ¼ö»ó
¡Ü 2009 Çö »ï¼ºÀüÀÚ »ýÈ°°¡Àü»ç¾÷ºÎ ±ÝÇüÆÀÀå

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬06


High Output Power Micropump by
Electro-Conjugate Fluid and its Applications

±èÁØ¿Ï¢Ó(µ¿°æ°ø´ë)

Abstract : In order to realize micro motion control systems for high output power-needed tasks, fluid-powered microactuators are considered as promising candidates due to scaling laws. However, nobody has ever developed such a microactuator that satisfies both high output power and miniaturization at the same time, because of difficulties in fabricating powerful micropumps. Even if over 200 archival journal papers have been published, there are no micropumps that have sufficient output power density and can be employed as power sources in micro hydraulic systems. In order to develop the powerful micropumps, we focus on electro-conjugate fluid (hereafter ECF) effect as a promising driving mechanism. ECF is a kind of dielectric and functional fluid, which generates a powerful jet, called the ECF jet, when electrodes inserted into it are subjected to DC voltages. In the ECF effect, electric energy is converted directly to kinetic energy of the ECF. Triangular prism and slit electrode (TPSE) pairs were proposed and developed as electrode structures for the strong ECF jets, because TPSE pairs have their great merits of combining relatively high performance with easy fabrication by a micro electro mechanical system (MEMS) technology. Thanks to the MEMS-fabricated TPSE pairs, ECF micropumps having world-highest power density were successfully realized. The ECF micropumps as micro hydraulic power source have led to the breakthroughs in various applications, such as micro cooling systems for microelectronic devices, micro fingers £¦ their hands, focus-tunable microlens, micro rate gyroscope, and so on. This presentation introduces the following to peoples in KSME: (1) ECF; (2) ECF micropumps as micro hydraulic power sources; and (3) various applications based on the ECF micropumps.

¿¬»ç ¼Ò°³ ±èÁØ¿Ï ±³¼ö

Ph.D. Joon-wan KIM is an Associate Professor at Secure Device Research Center of Precision and Intelligence Laboratory in Tokyo Institute of Technology. He was born in Seoul, Korea and received B.S. in the department of Mechanical Engineering, POSTECH (Pohang University of Science and Technology) in 1999. He was screened and selected as a Japanese Government Scholarship student by Japanese Embassy and joined in the department of Precision Machinery Engineering, the University of Tokyo in 1999. He received M.S. awarded as honor researches in 2002 and gained his Ph.D. at the same department in 2005. From 2002 to 2005, he was also a Junior Research Associate at Materials Fabrication Laboratory, RIKEN, which is Japan¡¯s largest and most comprehensive research organization for basic and applied science. His Ph.D. thesis is ¡°A Study on Micro Patterning Method Using Electrically Controlled Nano-particle Deposition¡±, which is the interdisciplinary research of mechatronics, biochemistry, and MEMS technology. From April in 2005 to May in 2013, he was an assistant professor and worked with Prof. Shinichi YOKOTA concerning microactuators using Electro-Conjugate Fluid (ECF) at Precision and Intelligence Laboratory in Tokyo Institute of Technology, where he is currently an associate professor. He is also an associate professor in the department of Mechano-Micro Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology. His current interests are micro & bio mechantronics, microactuators using functional fluids, and MEMS fabrication technology.

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬07


°øÁ¶»ê¾÷ÀÇ ¹Ì·¡Áغñ

±èº´¼ø¢Ó(LGÀüÀÚ)

Abstract : »õ·Î¿î ±â¼úÀÇ ´ëµÎ¿Í ¿ÜºÎ»ê¾÷°èÀÇ ¿µÇâÀ¸·Î °øÁ¶°ü·Ã ±â¼úÀÌ ²÷ÀÓ¾øÀÌ º¯È­ÇÏ°í ÀÖÀ½. °øÁ¶°ü·Ã ¿£Áö´Ï¾îµéÀº ÀÌ·¯ÇÑ º¯È­¿¡ ÀÇÇØ ¾ß±âµÇ´Â ±â¼úÀûÀÎ µµÀü¿¡ ´ëó ÇÒ ¼ö ÀÖµµ·Ï ÁغñµÇ¾î ÀÖ¾î¾ß ÇÕ´Ï´Ù. ÇâÈÄ Àΰ£»ýÈ°, »ýÅÂ, ±â¼ú, °æÁ¦, »çȸÀû Ãø¸é¿¡¼­ ¿¹»óµÇ´Â À̽´¸¦ Á¦±âÇÏ°í °ü·Ã ±â¼úÀÇ ¿¬°ü¼ºÀ» ¼³¸íÇÏ¿© »õ·Î¿î ½ÃÀå¿¡ ´ëÇÑ ±âȸ¿Í À§Çù¿äÀο¡ ´ëÇÑ Á¡µéÀ» Á¦±âÇÏ°í °øÁ¶»ê¾÷°è°¡ ¹Ì·¡¿¡ ´ëºñÇÏ¿© ÁغñÇÏ¿©ÀÚ ÇÏ´Â ºÎºÐÀ» ³íÀÇÇÏ°íÀÚ ÇÔ.

¿¬»ç ¼Ò°³ ±èº´¼ø Àü¹«

¡Ü ÇÐ ·Â ºÎ»ê´ëÇб³ ±â°è°øÇÐ (¹Ú»ç)
¡Ü ÁÖ¿ä°æ·Â ±¹Á¦ ³Ãµ¿±â±¸ Çѱ¹À§¿øȸ ºÎȸÀå, Çѱ¹ ³Ãµ¿ °øÁ¶ Çùȸ À§¿ø

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬08


Large-scale motions in wall-bounded turbulent flows

¼ºÇüÁø¢Ó(KAIST)

Abstract : Á¡Âø Á¶°ÇÀÌ ÀÖ´Â º® ³­·ù À¯µ¿Àº Æò±Õ Àü´Ü¿¡ ÀÇÇÏ¿© ºñµî¹æ¼ºÀÌ °­ÇÑ Æ¯Â¡ÀÌ ÀÖ´Ù. ÀÌ·Î ÀÎÇØ º®ÀÇ ÇüÅ¿¡ µû¶ó À¯µ¿ÀÇ Æ¯¼ºÀÌ ´Þ¶óÁö¸ç ¾Ð·Â ±¸¹è¿Í ·¹À̳îÁî ¼ö ¿ª½Ã º® ³­·ù¿¡ ¿µÇâÀ» ÁÖ´Â ÁÖ¿ä ÀÎÀÚ°¡ µÈ´Ù. À̵é ÀÎÀÚ¿¡ ÀÇÇØ °á°úÀûÀ¸·Î ³ªÅ¸³ª´Â ³­·ù Åë°è·®ÀÇ Â÷À̸¦ ¼³¸íÇϱâ À§Çؼ± ³­·ù ±¸Á¶¿¬±¸°¡ ÇÊ¿äÇÏ´Ù. Á÷Á¢ ¼öÄ¡ ¸ð»ç¸¦ ÀÌ¿ëÇÏ¿© ³­·ù ±¸Á¶ÀÇ °³º°ÀûÀÎ ÇüÅ ¹× À¯µ¿Àå¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ±¸Á¶ÀÇ ±Ô¸ð¿¡ µû¶ó Á¶»çÇÏ¿´°í, ´õ ³ª¾Æ°¡ ³­·ù ±¸Á¶ÀÇ ºÐÆ÷ °æÇâÀ» Á¶»çÇÏ¿© °á°úÀûÀ¸·Î ³­·ù Åë°è·®ÀÇ Â÷À̸¦ ¾ß±âÇÏ´Â ±¸Á¶ÀÇ °­µµ¿Í ¹Ðµµ¸¦ ¿¬±¸ÇÏ¿´´Ù. ³­·ù ±¸Á¶¿¡ °üÇÑ ÇаèÀÇ °ü½ÉÀº ÃʱâÀÇ Çì¾îÇÉ ÇüÅÂÀÇ ÀÛÀº ¿Í·ù ±¸Á¶ºÎÅÍ Çì¾îÇÉ ÇüÅÂÀÇ ¿Í·ù°¡ ´Ù¹ßÀ» ÀÌ·ç¾î ¶°´Ù´Ï´Â °Å´ë ³­·ù ±¸Á¶·Î±îÁö È®ÀåµÇ¾ú´Ù. ƯÈ÷ ´ëÇü ³­·ù ±¸Á¶ÀÇ °æ¿ì ¿ÜºÎ ¿µ¿ª¿¡¼­ ³­·ù ¿îµ¿ ¿¡³ÊÁö»Ó¸¸ ¾Æ´Ï¶ó ·¹À̳îÁî Àü´ÜÀÀ·ÂÀÇ ¸¹Àº ºÎºÐÀ» Â÷ÁöÇÏ´Â ´Éµ¿ÀûÀÎ ±¸Á¶ÀÌ´Ù. ÀÌµé ±¸Á¶´Â ·¹À̳îÁî ¼ö°¡ Áõ°¡ÇÒ¼ö·Ï ¿ì¼¼ÇØÁö¸ç º® ±Ùó ³­·ù »çÀÌŬ¿¡ ¿µÇâÀ» ¹ÌÄ¡°Ô µÈ´Ù. À¯µ¿Àå³»¿¡¼­ ´ëÇü ³­·ù ±¸Á¶¸¦ °ËÃâÇÔÀ¸·Î½á ³­·ù ±¸Á¶ »çÀÌÀÇ ´ë·ù ¼ÓµµÀÇ Â÷ÀÌ·Î ¼­·Î Ãßµ¹Çϸ鼭 »ý°Ü³ª´Â °ÍÀÓÀ» ¹àÇûÀ¸¸ç, ´ë·ù ¼ÓµµÀÇ Â÷ÀÌ´Â ³»ºÎ ¿µ¿ª°ú ¿ÜºÎ ¿µ¿ª ±¸Á¶°£ÀÇ »óÈ£ÀÛ¿ëÀ¸·Î ¹ß»ýµÈ ÁÖ À¯µ¿ ¹æÇâ ¼·µ¿ÀÇ °­µµ¿¡ µû¶ó ´Þ¶óÁüÀ» ¹ß°ßÇÏ¿´´Ù. ÀÌ¿Í °°Àº °úÁ¤À» ÅëÇØ Çü¼ºµÈ °Å´ë ³­·ù ±¸Á¶´Â ¿ÜºÎ ¿µ¿ªÀÇ Æò±Õ Àü´Ü¿¡ ÀÇÇÏ¿© ºÐ¸®µÇ´Â °úÁ¤À» °Þ´Â °ÍÀ» È®ÀÎÇÏ¿´´Ù. ¿ÜºÎ ¿µ¿ªÀÇ Æò±Õ Àü´ÜÀÌ º®ÀÇ ÇüÅ¿¡ µû¶ó ´Ù¸£¹Ç·Î, °ü³» À¯µ¿°ú ÆòÆÇ »çÀÌÀÇ À¯µ¿ ³» °Å´ë ³­·ù ±¸Á¶°¡ ¼­·Î ´Ù¸¥ Ư¡À» °¡ÁüÀ» ¾Ë ¼ö ÀÖ´Ù. ¶ÇÇÑ Æò±Õ ¼Óµµ¿¡ ºñÇØ ´À¸° °Å´ë ³­·ù ±¸Á¶°¡ ¿ÜºÎ ¿µ¿ªÀÇ ³­·ù °­µµ¸¦ ³ôÀÌ´Â µ¥¿¡ ±â¿©ÇÔÀ» È®ÀÎÇÏ¿´´Ù. ¹Ý¸é Æò±Õ ¼Óµµ¿¡ ºñÇØ ºü¸¥ °Å´ë ³­·ù ±¸Á¶´Â ³»ºÎ ¿µ¿ªÀÇ ³­·ù °­µµ¸¦ ³ôÀÌ´Â µ¥¿¡ ±â¿©ÇÏ¿´´Ù. ¸Å¿ì Å« ·¹À̳îÁî ¼ö À¯µ¿¿¡¼­ ¹ß°ßµÇ´Â ¿ÜºÎ ¿µ¿ªÀÇ °­ÇÑ ³­·ù °­µµ´Â ´À¸° °Å´ë ³­·ù ±¸Á¶¿¡ ÀÇÇÑ °á°úÀÌ´Ù. ÀÌ·¯ÇÑ ³­·ù ±¸Á¶¿¬±¸¸¦ ÅëÇØ ³­·ù ¸ðµ¨ÀÇ °³¼± ¹× »õ·Î¿î À¯µ¿ Á¦¾î ±â¹ý °³¹ßÀÇ Ãʼ®ÀÌ µÇ¸ç ±¤¹üÀ§ÇÑ ¿µ¿ª¿¡¼­ ³­·ù À¯µ¿ÀÇ º»ÁúÀ» ¹àÈú ¼ö ÀÖ´Ù.

¿¬»ç ¼Ò°³ ¼ºÇüÁø ±³¼ö

¡Ü ÇÐ ·Â ¼­¿ï´ëÇб³ ±â°è°øÇаú('78 Çлç), KAIST ±â°è°øÇаú('80 ¼®»ç), KAIST ±â°è°øÇаú('84 ¹Ú»ç)
¡Ü ÁÖ¿ä°æ·Â KAIST ¿¬±¸Ã³ ¿¬±¸Ã³Àå(01-03), ¹Ì±¹ UCLA ¹æ¹®±³¼ö(96-97), µ¶ÀÏ Karlsruhe ´ëÇб³ ¹æ¹®±³¼ö(90), ÀϺ» Hokkaido ´ëÇб³ ¹æ¹®±³¼ö(89-90), KAIST ±â°è°øÇаú ºÎ±³¼ö(88-94), ¹Ì±¹ UIUC ¹æ¹®±³¼ö(86-88), KAIST ±â°è°øÇаú(86-88), ´ëÇѱâ°èÇÐȸ À¯Ã¼°øÇкι® ȸÀå(07), ¹Ì±¹¹°¸®ÇÐȸ ¼®ÇÐȸ¿ø(13-ÇöÀç), Çѱ¹°úÇбâ¼úÇѸ²¿ø °øÇкΠÁ¤È¸¿ø(06-ÇöÀç), KAIST ±â°è°øÇаú ±³¼ö(94-ÇöÀç)
¡Ü ¼ö»ó°æ·Â ´ëÇѱâ°èÇÐȸ ³²ÇåÇмú»ó(97), ´ëÇѱâ°èÇÐȸ Çмú»ó(03), »ê¾÷ÀÚ¿øºÎ(úÞ.Áö½Ä°æÁ¦ºÎ) ºÎÇ°¼ÒÀç±â¼ú»ó(´ëÅë·É»ó)(03), KAIST Çмú»ó(05), KAIST ±¹Á¦Çù·Â»ó(08), KAIST Çмú ´ë»ó(09), KAIST ±â¼úÇõ½Å¿ì¼ö»ó(10), ¼ö»óÀç´Ü ¼ö´ç»ó(ÀÀ¿ë°úÇкι®)(14)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬09


LNG¿ë Åͺ¸±â±â °³¹ß ÇöȲ ¹× Àü¸Á

°­¼®Ã¶¢Ó, ¹Ú¼ö¿­, ±è¸íÈ¿(»ï¼ºÅ×Å©À©)

Abstract : 2000³â ÀÌÈÄ Àü ¼¼°è °¡½º »ê¾÷Àº ä±¼ÀÌ ¿ëÀÌÇÑ ÀüÅëÀûÀÎ ¸ÅÀå »Ó¸¸ÀÌ ¾Æ´Ñ ¼¼ÀÏ °¡½º µîÀÇ ÇüÅ·ΠÁ¸ÀçÇÏ´Â ºñÀüÅëÀûÀÎ ¸ÅÀå±îÁö °³¹ßÀÌ °¡´ÉÇØÁ® »ý»ê·®ÀÇ ºñ¾àÀû Áõ°¡¸¦ ¸ÂÀÌÇÏ°í ÀÖ´Ù. ÀÌ¿¡ µû¶ó ±âÁ¸ÀÇ ¼®À¯·ÎºÎÅÍ ÁÖ·Î °ø±Þ¹Þ´ø ¹ßÀü ¹× ¼ö¼Û¿ë ¿¬·á¿Í ³ªÇÁŸ µî ¼®À¯È­ÇÐ Á¦Ç° ¿ø·áµéÀÌ °¡½º ¿¬·á¿Í °¡½º ±â¹ÝÀÇ ¿¡Æ¿·» °èÅë ¿ø·á·Î ´ëüµÇ°í ÀÖ´Ù. °¡½ºÀÇ ¿øÈ°ÇÑ ¼ö¼Û ¹× »ç¿ëÀ» À§Çؼ­´Â ¾×È­¿Í °í¾ÐÈ­°¡ ÇʼöÀûÀ̸ç À̸¦ À§ÇÑ °íÈ¿À²°ú ³ôÀº ¿îÀü ¾ÈÁ¤¼ºÀ» °®´Â ÀåºñÀÇ °³¹ßÀº °¡½º »ê¾÷ÀÇ °æÁ¦¼º È®º¸¸¦ À§ÇØ Áß¿äÇÏ´Ù. Åͺ¸±â±â ¹æ½ÄÀÇ °¡½º ¾ÐÃà±â ¹× °¡½ºÅͺóÀº ¿©Å¸ ¹æ½Ä ´ëºñ °íÈ¿À² ¹× ´ë¿ë·®È­¿¡ À¯¸®ÇÏ¿© LNG ¼³ºñ¿ë ±â±â·Î ³Î¸® È°¿ëµÇ°í ÀÖ´Ù. ³Ã¸Å ¾ÐÃà±â¿Í ÆØâ±â´Â °í¾Ð, ±ØÀú¿Â ȯ°æ¿¡¼­ ÀÛµ¿ÇÏ¸ç ¾ÐÃà±âÀÇ ±¸µ¿±â·Î¼­ ÁÖ·Î »ç¿ëµÇ´Â °¡½ºÅͺóÀÇ Ãâ·Â ¹üÀ§´Â ´ë·« 30¿¡¼­ 130MW·Î ¾×È­ ¼³ºñ ¿ë·® ¹× ¹æ½Ä¿¡ µû¶ó¼­ ¼±ÅõȴÙ. ±× ¹Û¿¡ Áõ¹ß°¡½º ó¸® ¹× °¡½º ½Â¾Ð/°ø±Þ ¿ë ¾ÐÃà±â µîÀÌ LNG ¼³ºñ¿¡ È°¿ëµÇ°í ÀÖ´Ù. º» °­¿¬¿¡¼­´Â LNG ¼³ºñ¿¡¼­ È°¿ëµÇ´Â Åͺ¸¾ÐÃà±â, ÆØâ±â, °¡½ºÅͺó µî Åͺ¸ ±â±â¿¡ ´ëÇÑ ±â¼ú ÇöȲ ¹× ÇâÈÄ Àü¸Á°ú °ü·Ã ±¹³» ¿¬±¸ °³¹ß ¼º°ú¿¡ ´ëÇؼ­ ¼Ò°³ÇÏ°íÀÚ ÇÑ´Ù.

¿¬»ç ¼Ò°³ °­¼®Ã¶ Àü¹®À§¿ø

¡Ü ÇÐ ·Â : ¿¬¼¼´ëÇб³ °ø´ë ±â°è°øÇаú('88 Çлç) ¿¬¼¼´ëÇб³ °ø´ë ±â°è°øÇаú('90 ¼®»ç)
¡Ü ÁÖ¿ä°æ·Â : »ï¼ºÅ×Å©À©(90-), ÆÄ¿ö½Ã½ºÅÛ¿¬±¸¼Ò ¿¬±¸Àü¹®À§¿ø(14-)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬10


±º¼öÇ° ½Å·Ú¼º º¸Àå ½ÇÅ ¹× ÇâÈÄ ¹ßÀü¹æÇâ

¾ç°æ¿ì¢Ó(±¹¹æ±â¼úÇ°Áú¿ø)

Abstract : ÀüÀå¿¡¼­ ¾Æ±ºÀÇ ÇÇÇظ¦ ÃÖ¼ÒÈ­ÇÏ°í Àû¿¡°Ô Ÿ°ÝÀ» ÃÖ´ëÈ­Çϱâ À§Çؼ­´Â °íµµÀÇ ½Å·Ú¼ºÀÌ º¸ÀåµÈ ±º¼öÇ°À» ȹµæÇÏ¿© ¿î¿ëÇÏ´Â °ÍÀº ÇʼöÀûÀÌ´Ù. ÀÌ·¯ÇÑ ½Å·Ú¼º ¾÷¹«´Â ¼ö¸íÁÖ±â Àü´Ü°è¿¡ °ÉÃÄ ¼öÇàµÇ¾î¾ß Çϴµ¥, ȹµæ´Ü°è¿¡¼­ °³¹ßÀåºñÀÇ °íÀåÀ» ÃÖ´ëÇÑ ¾ïÁ¦ÇÏ¿© ½Å·Úµµ°¡ ³ôÀº ±º¼öÇ°À» ¾ßÀü¿¡ ¹èÄ¡/¿î¿ëÇÔÀ¸·Î½á, ¿î¿ëÀ¯Áöºñ¿ë Àý°¨°ú µ¿½Ã¿¡ Àåºñ °¡µ¿·üÀ» ±Ø´ëÈ­ÇÏ¿©¾ß ÇÑ´Ù. ¹æÀ§»ç¾÷ûÀº 2006³â ¼³¸³µÈ ÀÌÈÄ ,¡°¹æÀ§»ê¾÷ÀÇ ½Å°æÁ¦¼ºÀå µ¿·ÂÈ­¡±¸¦ ±¹Á¤°úÁ¦·Î ¼±Á¤ÇÏ¿©, ½Å·Ú¼º Çâ»óÀ» ÅëÇÑ ±ºÀÇ Needs¸¦ ÃæÁ·ÇÔÀº ¹°·Ð ÇؿܼöÃâÀ» Àû±ØÀûÀ¸·Î ÃßÁøÇÏ¿© ¿ÔÀ¸¸ç, ±¹¹æ±â¼úÇ°Áú¿øµµ Á¤ºÎ Á¤Ã¥¿¡ ºÎÀÀÇϱâ À§ÇØ Áö¼ÓÀûÀÎ Á¤Ã¥¿¬±¸, ¼¼¹Ì³ª ¹× °øûȸ µîÀ» ÅëÇØ ±º¼öÇ° Ç°Áú ¹× ½Å·Ú¼º Çâ»óÀ» µµ¸ðÇÏ¿© ¿Ô´Ù. ƯÈ÷ ±Ý³âµµ¿¡´Â ±º¼öÇ° ½Å·Ú¼º ÀÎÇÁ¶ó °­È­¸¦ À§ÇÑ À§Å¹¿¬±¸¸¦ ½Ç½ÃÇÏ¿´´Ù. º» ¹ßÇ¥ ÀÚ·á¿¡¼­´Â ±×µ¿¾È ½Ç½ÃÇØ¿Â ¿¬±¸°á°ú¸¦ Åä´ë·Î ¹«±âü°è ¼Ò¿äÁ¦±â ºÎÅÍ Ã¼°è°³¹ß, Àü·ÂÈ­ ¹× ¿î¿ëÀ¯Áö ´Ü°è¿¡ °ÉÄ£ ½Å·Ú¼º º¸Àå °ü·Ã Á¦µµ, ¾÷¹«¼öÇà ü°è, ÀÎÇÁ¶ó ÇöȲÀ» Åä´ë·Î ÇâÈÄ ¹ßÀü¹æÇâÀ» Á¦½ÃÇÏ¿´´Ù. ¸ÕÀú Á¦µµ ¹× ¾÷¹«¼öÇà ü°è´Â ±¹³»/¿Ü ±¹¹æºÐ¾ß ¹× ±¹³» ¹Î°£ºÐ¾ß¸¦ ºñ±³ºÐ¼®ÇÏ¿© ¹ßÀü¹æÇâÀ» Á¦½ÃÇÏ¿´À¸¸ç, ÀÎÇÁ¶ó´Â ±¹¹æ ¹× ¹Î°£±â°üÀÇ ÀÎÇÁ¶ó ±¸Ãà ½ÇÅ¿¡ ´ëÇÑ Á¶»çºÐ¼® °á°ú¸¦ Åä´ë·Î º¸°­¿ä¼Ò¿Í ¹Î°£±â°ü°ú ¿¬°èÇÑ ½Å·Ú¼º Æò°¡ ¹ßÀü ¹æ¾ÈÀ» Á¦½ÃÇÏ¿´´Ù. ±¹¹æ±â¼úÇ°Áú¿øÀº ±Ý³âµµ ¿¬±¸°á°ú¸¦ ¹ÙÅÁÀ¸·Î ±º¼öÇ° ½Å·Ú¼º Çâ»óÀ» À§ÇÑ ÁßÀå±â ·Îµå¸ÊÀ» ¼ö¸³ÇÏ¿© ¹æÀ§»ç¾÷û°ú ÇÕµ¿À¸·Î Á¦µµ°³¼±, ÀÎÇÁ¶ó °­È­ ¹× ¹Î°£±â°ü°ú È°¿ëÀÇ È°¼ºÈ­¸¦ ÃßÁøÇÒ ¿¹Á¤ÀÌ´Ù.

¿¬»ç ¼Ò°³ ¾ç°æ¿ì ½ÇÀå

¡Ü ÇÐ ·Â Áß¾Ó´ëÇб³ ±â°è°øÇаú('88 Çлç, '95 ¼®»ç)
¡Ü ÁÖ¿ä°æ·Â ±º¼öÇ° Ç°Áúº¸Áõ¾÷¹« ´ã´ç(88), ±¹¹æÇ°Áú°æ¿µ½Ã½ºÅÛ ÀÎÁõ¾÷¹« ´ã´ç(00), ÇؿܵµÀÔÇ° °¡°ÝºÐ¼® ¾÷¹« ´ã´ç(06), °¡°ÝºÐ¼®ÆÀÀå(08), Á¤Ã¥±âȹ ´ã´ç(09), â¿ø 2ÆÀÀå(11), Ç°Áú°æ¿µ¿î¿µ½ÇÀå(14)
¡Ü ¿¬±¸½ÇÀû ±º¼öÇ° Ç°Áúº¸Áõü°è °³¼± Á¾ÇÕ´ëÃ¥ ¼ö¸³(11, 14), ¼¼°è ¹æ»ê½ÃÀåºÐ¼®º¸°í¼­ ÃÖÃÊ ±âȹ ¹× ¹ß°£(09), ±¹¹æÇ°Áú°æ¿µ½Ã½ºÅÛ ±Ô°Ý ¹× Áöħ¼­ Á¦Á¤(03), K1ÀüÂ÷ º¯¼Ó±â ¾ßÀü°áÇÔ ¿øÀκм® µî ¿¬±¸º¸°í¼­ 18°Ç ¹ß°£

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬11


Àå¼ödzµ­ÀÌ ¸ð¹æ ³¯°¹Áþ ÃʼÒÇü ºñÇàü ¿¬±¸

¹ÚÈÆö¢Ó, ÆÇ È£¾Ó ºÎ, ¾Æ¿ì Ƽ Å´ ·Î¾È(°Ç±¹´ëÇб³)

Abstract : º» °­¿¬¿¡¼­´Â Àå¼ödzµ­ÀÌÀÇ ºñÇà ¿ø¸®¸¦ ÆľÇÇÏ°í, À̸¦ °ïÃæ¸ð¹æ ³¯°¹Áþ ÃʼÒÇü ºñÇàüÀÇ ¿¬±¸°³¹ß¿¡ Àû¿ëÇÑ »ç·Ê¸¦ ¼³¸íÇÑ´Ù. Àå¼ödzµ­ÀÌÀÇ ¹«°Ô ´ëºñ ³¯°³ ¸éÀû (wing loading)Àº °ïÃæÀÇ Æò±Õ°ªÀÎ 8N/m2 º¸´Ù ³ôÀº 40N/m2¿¡ ´ÞÇÑ´Ù. ÀÌ´Â ³¯°³ ¸éÀû¿¡ ºñÇؼ­ ¹«°Å¿î ¸öü¸¦ µé¾î ¿Ã¸± ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. µû¶ó¼­ Àå¼ödzµ­ÀÌÀÇ ºñÇà ¿ø¸®¸¦ ÀûÀýÈ÷ ¸ð¹æÇÏ¸é °ïÃæ ¸ð¹æ ÃʼÒÇü ³¯°¹Áþ ºñÇàü¸¦ °³¹ßÇÒ ¼ö ÀÖ´Ù. ³¯°¹Áþ ºñÇàüÀÇ °¡Àå Áß¿äÇÑ ³¯°¹Áþ ÀåÄ¡´Â ¾çÂÊ ³¯°³°¡ ´ëĪÀûÀ¸·Î ³¯°¹Áþ ÇÒ ¼ö ÀÖµµ·Ï ¼³°è ÇÏ¿´°í, ³¯°³´Â Àå¼ödzµ­ÀÌ ³¯°³ÀÇ ½Ã¸Æ ±¸Á¶¸¦ ¸ð¹æÇÏ¿© Á¦ÀÛÇÏ¿´´Ù. ³¯°¹ÁþÀ¸·Î ¹ß»ýÇÏ´Â °ø±â·ÂÀº 3Â÷¿ø ³¯°³ ¿îµ¿ ±ËÀû (wing kinematics)¸¦ Àû¿ëÇÑ ºñÁ¤»ó ±ê ¿ä¼Ò ÀÌ·Ð (unsteady blade element theory)À» ÀÌ¿ëÇÏ¿© ¿¹ÃøÇÏ¿´´Ù. ¿¹ÃøµÈ °ø±â·ÂÀº CFD·Î ¿¹ÃøÇÑ °ø±â·Â°ú À¯»çÇÏ¿´°í, ÃøÁ¤µÈ Æò±Õ Ãß·ÂÀ» ºñ±³Àû Àß ¿¹ÃøÇÏ¿´´Ù. ÀÌ ÀÌ·ÐÀ» ÀÌ¿ëÇÏ¿©, ³¯°¹ÁþÀ¸·Î ¹ß»ýÇÏ´Â °ø±â·ÂÀÇ Áß½ÉÀ» ÆľÇÇÏ°í, ³¯°¹ÁþÀ¸·Î ÇÇĪ¸ð¸àÆ®°¡ ¹ß»ýÇÏÁö ¾Êµµ·Ï ³¯°¹Áþ ºñÇàüÀÇ ¹«°Ô Áß½ÉÀ» ¸ÂÃß¾î, ÀÌ·úºñÇà ¶§ Ãʱâ ÀÚ¼¼ ¾ÈÁ¤¼ºÀ» °¡Áú ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á, Á¦¾î ¾øÀ̵µ ¾ÈÁ¤ÀûÀ¸·Î ÀÌ·úÇϴµ¥ ¼º°øÇÏ¿´´Ù. ÃÖ±Ù¿¡´Â °ïÃæ°ú °°ÀÌ, ³¯°¹Áþ¸¸À¸·Î ºñÇà·Â°ú Á¦¾î·ÂÀ» µ¿½Ã¿¡ ¹ß»ýÇÒ ¼ö ÀÖ´Â Á¦¾î ¸ð¸àÆ® ¹ß»ýÀÌ °¡´ÉÇÑ ³¯°¹Áþ ¸ÞÄ«´ÏÁòÀ» ¼³°èÇÏ°í ½ÃÇè Áß¿¡ ÀÖ´Ù. ³¯°¹Áþ °¢µµÀÇ ¹üÀ§¸¦ º¯°æÇÏ´Â ¹æ½Ä, ³¯°¹Áþ ¿îµ¿ ±ËÀûÀ» º¯°æÇÏ´Â ¹æ½Ä, ³¯°¹Áþ ¸éÀ» º¯°æÇÏ´Â ¹æ½ÄÀÇ ¼¼ °¡Áö ¹æ½ÄÀ» °øÇÐÀûÀ¸·Î ±¸ÇöÇÏ¿©, ³¯°¹Áþ ÀåÄ¡¿Í °áÇÕÇÏ°í, À̵éÀÌ ºñÇàü ±æÀÌ ¹æÇâÀÇ ÀÚ¼¼¸¦ º¯°æÇÒ ¼ö ÀÖÀ½À» È®ÀÎÇÏ¿´´Ù. ÇöÀç Á¦¾î ºñÇàÀÌ °¡´ÉÇÑ Àå¼ödzµ­ÀÌ ¸ð¹æ ºñÇàü¸¦ °³¹ßÇϱâ À§ÇÑ ¿¬±¸¸¦ °è¼ÓÇÏ°í ÀÖ´Ù.

¿¬»ç ¼Ò°³ ¹ÚÈÆö ±³¼ö

¡Ü ÇÐ ·Â ¼­¿ï´ëÇб³ Ç×°ø°øÇÐ('85 Çлç, '87 ¼®»ç), University of Maryland, USA Aerospace Engineering('94, ¹Ú»ç)
¡Ü ÁÖ¿ä°æ·Â ±â¾ÆÀÚµ¿Â÷ Áß¾Ó±â¼ú¿¬±¸¼Ò ¿¬±¸¿ø((86-88), University of Maryland ¿¬±¸/±³À° Á¶±³(89-94), Çѱ¹Ç×°ø¿ìÁÖ¿¬±¸¼Ò ¼±ÀÓ¿¬±¸¿ø(94-95), °Ç±¹´ëÇб³ Ç×°ø¿ìÁÖ°øÇаú ±³¼ö, ºÎ±³¼ö, Á¶±³¼ö(95-06), °Ç±¹´ëÇб³ ´ëÇпø ½Å±â¼úÀ¶ÇÕÇаú ±³¼ö(06-ÇöÀç), °Ç±¹´ëÇб³ ÀÚÀ²Àü°øÇкΠ±³¼ö(14-ÇöÀç)
¡Ü ¼ö»ó°æ·Â °Ç±¹´ëÇб³ Çмú»ó ¿¬±¸Çмú»ó(05), Á¦1ȸ Çѱ¹Áö´É·Îº¿ ÇÏ°èÁ¾ÇÕÇмú´ëȸ ¿ì¼ö³í¹®»ó(06), Best paper award, The 4th URAI Conference ÃÖ¿ì¼ö³í¹®»ó(11)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬12


The Mechanical Design and requirements of AFM for Quantitative
Critical Dimension Nano-Metrology

Á¶»óÁØ¢Ó, ¾Èº´¿î, Á¤»óÇÑ(ÆÄÅ©½Ã½ºÅÛ½º)

Abstract : ÇöÀç ¹ÝµµÃ¼ »ê¾÷Àº ȸ·Î ¼±Æø 45 nm´ëÀÇ °øÁ¤¿¡¼­ Á¡Â÷ÀûÀ¸·Î ȸ·Î ¼±Æø 30 nm´ëÀÇ °øÁ¤À¸·Î ÁøÀÔÇÏ°í ÀÖÀ¸¸ç ½ÇÇèÀûÀ¸·Î´Â ¼±Æø 14nm °øÁ¤À» ÁøÇàÇÏ°í ÀÖ´Ù. ÀÌ¿¡ µû¶ó »ê¾÷°è¿¡¼­´Â ¼önmÀÇ °ø°£ ºÐÇØ´ÉÀ» °®À¸¸é¼­ 0.2 nm ÀÌÇÏÀÇ ÀçÇö¼º ¹× Á¤¹Ðµµ¸¦ °®´Â Á¤·®ÃøÁ¤ ±â´ÉÀ» °¡Áø ¿øÀÚÇö¹Ì°æ (AFM)ÀÇ º¸±ÞÀÌ ¿ä±¸µÇ°í ÀÖ´Ù. ÀÌ·± °í¼º´ÉÀÇ Àåºñ¿Í ÃøÁ¤ ±â¼ú ¹× ºÐ¼® ±â¼úÀ» °¡´ÉÇÏ°Ô Çϱâ À§Çؼ­´Â ±âÁ¸ AFMÀÇ ÃøÁ¤ ÀçÇö¼º ¹× ¹Ýº¹¼º, ÇÇ¿¡Á¶ ±¸Á¶¹°ÀÇ ÀÌ·ÂÇö»ó(hysteresis)¿¡ ÀÇÇÑ ¿¡·¯, ´À¸° ½ºÄµ ¼Óµµ¿¡ µû¸¥ ÀÛ¾÷·® (throughput)°³¼± µî ¸¹Àº ³ë·ÂÀÌ ÇÊ¿äÇϸç ƯÁ¤ ºÐ¾ß¿¡ µû¶ó °í·ÁÇؾßÇÒ Á¶°ÇµéÀÌ ÀÖ´Ù. ÀÌ·¯ÇÑ AFM¿¡¼­ ¿ä±¸ÇÏ´Â ¿©·¯ °¡Áö ±¸µ¿Á¶°ÇÀ» ¸¸Á·Çϱâ À§Çؼ­ ÇÇ¿¡Á¶ Çö»ó (Piezoelectricity) °ú À¯¿¬ ÈùÁö ¸ÞÄ¿´ÏÁò (flexure mechanism)À» ÀÌ¿ëÇÏ¿© ÃÊÁ¤¹Ð À§Ä¡ °áÁ¤ ±â±¸¸¦ Á¦ÀÛÇÏ´Â ¿¬±¸°¡ ¸¹ÀÌ ÀÌ·ç¾îÁ® ¿Ô´Ù. ù ¹ø°·Î Á¤·®Àû ÃøÁ¤À» À§ÇÏ¿© °³¹ßµÈ XY ½ºÄ³³Ê´Â ¸¹Àº ¿¬±¸¸¦ ÅëÇØ °ËÁõ µÈ PZT (lead zirconate titanate) actuator¿Í flexure mechanism ±â¹ÝÀÇ guide·Î ±¸¼ºÇÏ¿´°í. ¶ÇÇÑ PZTÀÇ ÁõÆøÀ» À§ÇØ force lever ±â±¸¸¦ Àû¿ëÇÏ¿´´Ù. µÎ ¹ø°·Î AFMÀÇ Å½Ä§ÀÌ ÃøÁ¤ Áß Ç¥¸é°ú Á¢ÃËÀÌ ÀϾ¸é Žħ ³¡ÀÌ ¸¶¸ð°¡ µÇ¸é¼­ Á¤·®ÀûÀÎ ÃøÁ¤ÀÌ ºÒ°¡´ÉÇØÁö±â ¶§¹®¿¡ ŽħÀÌ ºñÁ¢ÃËÀ¸·Î ÃøÁ¤ÇÒ ¼ö ÀÖ´Â Z ½ºÄ³³Ê¸¦ °³¹ßÇÏ¿´À¸¸ç À̹ø Çмú´ëȸ¿¡¼­´Â ºñÁ¢ÃË½Ä ÃøÁ¤À» Çϱâ À§ÇÑ ½Ã½ºÅÛÀûÀÎ Á¶°Ç°ú Á¦ÇÑ ¿ä¼ÒµéÀ» ¼Ò°³ÇÏ°í À̸¦ ½ÇÇèÀûÀ¸·Î °ËÁõÇÑ µ¥ÀÌÅ͸¦ ¹ßÇ¥ÇÒ ¿¹Á¤ÀÌ´Ù.

¿¬»ç ¼Ò°³ Á¶»óÁØ ¼ö¼®¿¬±¸¿ø

¡Ü ÇÐ ·Â Iowa State University »ý¹°Çаú('93 Çлç), Iowa State University ½Å°æ°úÇÐ ('98 ¹Ú»ç), Wayne State University ÀÇ´ë »ý¸®Çаú ('01 Post Doc.)
¡Ü ÁÖ¿ä°æ·Â Wayne State Univ. NanoBioScience Center Associate Director(02), KAIST ¿¬±¸±³¼ö ¹× Park Systems ¿¬±¸ Fellow(03), ISO TC201 Secretary & SC9 Convener and Expert(08-ÇöÀç), (ÁÖ)Park Systems ¼ö¼®¿¬±¸¿ø ¹× R&D Director(05-ÇöÀç), ¼­¿ï´ëÇб³ À¶ÇÕ±â¼ú¿ø Ã¥ÀÓ¿¬±¸¿ø(12-ÇöÀç)
¡Ü ¼ö»ó°æ·Â ´ëÇѹα¹ ±â¼úÀº»ó ¹× 10´ë ½Å±â¼ú»ó: (ÁÖ)ÆÄÅ©½Ã½ºÅÛ½º)(10), ¿¬±¸Çõ½Å»ó (°ú±âºÎ Àå°ü»ó:Á¶»óÁØ) ¹× »ê¾÷±â¼ú»ó (Áö°æºÎ Àå°ü»ó: (ÁÖ)ÆÄÅ©½Ã½ºÅÛ½º)(12)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬13


2014 Çѱ¹¿¬±¸Àç´Ü ±âÃÊ¿¬±¸»ç¾÷ °³¿ä ¹× ÇöȲ

È«µ¿Ç¥¢Ó(Çѱ¹¿¬±¸Àç´Ü)

Abstract : Çѱ¹¿¬±¸Àç´ÜÀº 2009³â Çѱ¹ÇмúÁøÈïÀç´ÜÀ» Áß½ÉÀ¸·Î Çѱ¹°úÇÐÀç´Ü, ±¹Á¦°úÇбâ¼úÇù·ÂÀç´Ü µî ±³À°ºÎ ¹× °ú±âºÎ »êÇÏ 3°³ ´Üü°¡ ÅëÇյǸ鼭 ¼³¸³µÆ´Ù. Áַ»ç¾÷Àº °¢ ºÐ¾ß ¿¬±¸°³¹ßÀ» »ç¾÷º°·Î Áö¿øÇÏ´Â °ÍÀ¸·Î ÀÌ°øºÐ¾ß ±âÃÊ¿¬±¸»ç¾÷ÀÇ °æ¿ì °³Àבּ¸/Áý´Ü¿¬±¸/±âÃÊ¿¬±¸±â¹Ý±¸ÃàÀÇ ´ë»ç¾÷ ¾Æ·¡ ÃÑ 11°³ÀÇ ¼¼ºÎ »ç¾÷À» ¸Å³â ¼±Á¤.Áö¿øÇÏ°í ÀÖ´Ù. 2014³â¿¡´Â âÁ¶°æÁ¦¶ó´Â ±¹Á¤¹æÇâ¿¡ ºÎÀÀÇϱâ À§ÇØ ¿ì¼ö¼º°ú âÃâ°ú âÀÇÀû.µµÀüÀû ¿¬±¸Áö¿ø °­È­¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, Á¤Ã¥Àû ¹è·Á°¡ ÇÊ¿äÇÑ °èÃþ(¿©¼º/Áö¿ª´ëÇÐ/Ä¿¸®¾î°úÇÐÀÚ µî)¿¡ ´ëÇÑ Áö¿ø È®´ë ¹× ±Û·Î¹ú Æò°¡ µµÀÔ µîÀ» ÁßÁ¡ ÃßÁø ¹æÇâÀ¸·Î »ï°í ÀÖ´Ù. º» °­¿¬¿¡¼­´Â Çѱ¹¿¬±¸Àç´Ü ±âÃÊ¿¬±¸»ç¾÷ °³¿ä ¹× 2014³âµµ ÃßÁø°èȹ°ú ¼¼ºÎ»ç¾÷º° ½ÃÇà°èȹÀ» ¼Ò°³ÇÑ´Ù.

¿¬»ç ¼Ò°³ È«µ¿Ç¥ ´ÜÀå

¡Ü ÇÐ ·Â ÇѾç´ëÇб³ Á¤¹Ð±â°è°øÇÐ('78 Çлç), Çѱ¹°úÇбâ¼ú¿ø ±â°è°øÇÐ('80, ¼®»ç), ÇѾç´ëÇпø ±â°è°øÇÐ('83 ¹Ú»ç), ¹Ì±¹ PURDUE Post-Doctor('89 ¹Ú»ç)
¡Ü ÁÖ¿ä°æ·Â ÀüºÏ´ëÇб³ ±³¼ö(83-ÇöÀç), ¼ÒÀ½Áøµ¿ÇÐȸ Ãѹ«ÀÌ»ç(99-ÇöÀç), Çѱ¹¿¬±¸Àç´Ü Àü¹®À§¿ø(10-12), Çѱ¹¿¬±¸Àç´Ü Ã¥ÀÓÀü¹®À§¿ø(12-14), Çѱ¹¿¬±¸Àç´Ü °øÇдÜÀå(14-ÇöÀç)
¡Ü ¼ö»ó°æ·Â Çѱ¹¼ÒÀ½Áøµ¿ÇÐȸ °­¿ù³í¹®»ó(01)

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬14


»õ·Î¿î °øÇб³À°¹æ½ÄÀ¸·Î¼­ "ÀüÇб⠼³°è±â¹Ý ÇнÀ"ÀÇ Á¦¾È

±è¿µ¼®¢Ó(¼­¿ï°úÇбâ¼ú´ëÇб³)

Abstract : Çлýµé·Î ÇÏ¿©±Ý ½ÇÁ¦ ±¸Çö°úÁ¤¿¡¼­ ÀϾ´Â ´Ù¾çÇÑ ¹®Á¦µé·ÎºÎÅÍ À̷и¸ÀÌ ¾Æ´Ñ ½Ç¿ëÀû Áö½ÄÀ» ½ÀµæÇϴµ¥ È¿°úÀûÀÎ ±³À°°úÁ¤À¸·Î Capstone µðÀÚÀÎÀ» ¸¹Àº Çб³¿¡¼­ ½Ç½ÃÇÏ°í ÀÖ´Ù. Capstone µðÀÚÀÎÀº »ç½Ç»ó ¼³°è¸¦ ±â¹ÝÀ¸·Î ÇнÀÀ» ÇÏ´Â ¹æ¹ýÀÇ ÀÏÁ¾À¸·Î¼­, ´ëÇб³ ÀçÇÐÁß¿¡ ¹è¿î ¸ðµç Áö½ÄµéÀ» Á¾ÇÕÇÏ¿© ÀÛÇ°À̳ª ³í¹®À» ±¸ÇöÇغ½À¸·Î½á, ½Ç¿ëÀû Áö½ÄÀ» ¾î´À Á¤µµ °®Ãß°í »ê¾÷°è¿¡ ÁøÃâÇÏ°Ô ÇÏ¿©, »ê¾÷°è¿¡¼­ÀÇ Àç±³À°ÀÇ ½Ã°£À» ÁÙÀÌ°í ÇлýÀÇ »ê¾÷°è ÀûÀÀÀ» ¼Õ½±°Ô Çϵµ·Ï ÇÏ´Â ¼º°øÀûÀÎ °øÇб³À° ¹æ¹ýÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ´ÜÁ¡ÀÌ ÀÖ´Ù¸é Ãë¾÷µîÀÇ ¹®Á¦·Î ¹Ù»Û 4Çгâ 1³â°£¸¸ ÇÏ´Â °ÍÀ̾ ½Ã°£ÀÌ ºÎÁ·ÇÏ´Ù´Â °Í°ú ÀÛÇ°Á¦ÀÛ°úÁ¤¿¡ ¸¹Àº ½Ã°£°ú ³ë·ÂÀÌ µé¾î°¡±â ¶§¹®¿¡ Á¡Á¡ ±âÇÇÇÏ´Â Ãß¼¼ÀÌ°í ÀÛÇ°ÀÇ ÁúÀÌ Á¡Á¡ ÀúÇϵȴٴ °ÍÀÌ´Ù. ÀÌ·¯ÇÑ ¹®Á¦Á¡ ¶§¹®¿¡ ¼­¿ï°úÇбâ¼ú´ëÇб³´Â Capstone µðÀÚÀÎÀ» ¼±µµÀûÀ¸·Î ¼öÇàÇÏ´Â ´ëÇÐÀ¸·Î¼­ ½Ç¿ë±³À°¿¡ »ó´çÇÑ È¿°ú¸¦ °ÅµÎ¾úÀ½¿¡µµ ºÒ±¸ÇÏ°í Capstone µðÀÚÀÎÀ» Áö¼ÓÇÏ´Â °ÍÀÌ Á¡Á¡ ¾î·Á¿öÁö°í À־, ÃëÁö´Â »ì¸®¸é¼­ ºÎ´ãÀ» ºÐ»ê½ÃÅ°°í ÀÛÇ°ÀÇ ÁúÀ» ³ôÀÌ´Â ¹æ¾ÈÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú´Ù. Çõ½ÅÀû ÇØ°á¹æ¾ÈÀ¸·Î ¹æ¾ÈÀ¸·Î ¡°ÀüÇб⠵ðÀÚÀαâ¹Ý ÇнÀ¡±À̶ó´Â ½Ç¿ë±³À° °³³äÀ» ±¸»óÇÏ¿´´Âµ¥, ÀÌ´Â Term Project°¡ Àü°ø±³°úÀÇ 42%¿¡ ÇØ´çÇÏ´Â ±³°ú¸ñ¿¡¼­ ÀÌ¹Ì ½Ç½ÃµÇ°í Àֱ⠶§¹®¿¡ °¡´ÉÇÑ ÀÏÀ̾ú´Ù. ¡°ÀüÇб⠵ðÀÚÀαâ¹Ý ÇнÀ¡±À̶õ Capstone µðÀÚÀÎ ÁÖÁ¦¾È¿¡ Æ÷ÇÔµÈ ´Ù¾çÇÑ ¿ä¼ÒµéÀ» 4Çгâ 1³âµ¿¾È¸¸ ÇÏ´Â °ÍÀÌ ¾Æ´Ï°í 1,2,3Çг⠱ⰣÁß¿¡µµ Term Project¸¦ ÅëÇÏ¿© ºÎºÐºÎºÐÀ» ±¸ÇöÇÏ°í 4Çг⿡´Â ¸¶¹«¸®¸¦ À§ÁÖ·Î Capstone µðÀÚÀÎÀ» ¼öÇàÇÏ´Â »õ·Î¿î ¹æ¾ÈÀÌ´Ù. º» °­¿¬¿¡¼­´Â ¡°ÀüÇб⠵ðÀÚÀαâ¹Ý ÇнÀ¡±ÀÇ ±³À°½Ã½ºÅÛÀ» ¼Ò°³ÇÏ°í ¼öÇà°úÁ¤ ¹× È¿°ú¿¡ ´ëÇÏ¿© ¾Ë¾Æº»´Ù.

¿¬»ç ¼Ò°³ ±è¿µ¼® ±³¼ö

¡Ü ¼­¿ï°úÇбâ¼ú´ëÇб³ ±â°è½Ã½ºÅÛµðÀÚÀΰøÇаú ±³¼ö
¡Ü Àü°øºÐ¾ß : ÈÞ¸Ó³ëÀ̵å·Îº¿, »ê¾÷¿ë ÀÚµ¿È­ Àåºñ, ÀÚµ¿Â÷¿ë ÀüÀÚÁ¦¾îÀåÄ¡
¡Ü ¼­¿ï°úÇбâ¼ú´ëÇб³ ¼öµµ±Ç Ư¼ºÈ­ »ç¾÷ ¡°21¼¼±â ´ÙºóÄ¡Çü ÀÎÀç¾ç¼º»ç¾÷´Ü¡± ´ÜÀå
¡Ü ·Îº¸¿ùµå Seoultech Áö´É·Îº¿´ëȸ, ÈÞ¸Ó³ëÀÌµå ·Îº¿´ëȸ ÃßÁøÀ§¿øÀå

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬15


âÀǼºÀ» À§ÇÑ °øÇаú µðÀÚÀÎÀÇ ÅëÇÕÀû ±³À° ¹æ¾È

°­¼ºÁߢÓ(°Ç±¹´ëÇб³)

Abstract : Society needs creative engineers who can explore innovative problem-solving and communicate with other areas. Integrated education with design and engineering is effective methods to enhance creativity and emotion of engineers. This study propose three different methods for integrated education: regular program as fundamental course, integrated class with engineering and design, and short-term independent design experience program. It is required to extend design-engineering programs in engineering school and government support for design-engineering programs.

¿¬»ç ¼Ò°³ °­¼ºÁß ±³¼ö

 ¡Ü ÇÐ ·Â: ÇѾç´ë Á¤¹Ð±â°è°øÇаú(92 Çлç), ¼­¿ï´ë ¹Ì¼ú´ë »ê¾÷µðÀÚÀΰú(99 Çлç), ¼­¿ï´ë ¹Ì¼ú´ë µðÀÚÀμ®»ç(01), ¹Ì±¹ Ä«³×±â¸á·Ð´ëÇб³ µðÀÚÀμ®»ç(03), ¼­¿ï´ë ¹Ì¼ú´ë µðÀÚÀÎÇÐ ¹Ú»ç¼ö·á(06)
 ¡Ü ÁÖ¿ä°æ·Â: ÇѾç´ë ¿µ»óµðÀÚÀÎÀü°ø ±³¼ö(03 ~07 ), °Ç±¹´ë »ê¾÷µðÀÚÀΰú ±³¼ö(08~ÇöÀç), ¼­¿ï½Ã µðÀÚÀÎÀ§¿ø(10~12)

À¯¸Á°úÇÐÀÚ±â¼úÀÚ ¼¼¼Ç ¾È³»

À¯¸Á°úÇбâ¼úÀÚ ¼¼¼Ç [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

 

¿ì¸® ÇÐȸ¿¡¼­´Â ±â°è°øÇÐ(»ê¾÷) ºÐ¾ß¿¡ »õ·ÎÀÌ ÁøÃâÇÑ ÀþÀº °úÇбâ¼úÀÚµéÀÌ ¿ì¸® ÇÐȸ Çмú´ëȸ¿¡¼­ ±â°è ºÐ¾ß¿¡ ¸ö´ã°í °è½Å ¿©·¯ºÐ²² ÀÚ½ÅÀ» ¼Ò°³ÇÔÀ¸·Î½á ÇмúÈ°µ¿¿¡ º¸´Ù Ä£¼÷ÇÏ°Ô Àû±ØÀûÀ¸·Î Âü¿©ÇÒ ¼ö ÀÖµµ·Ï À¯µµÇϱâ À§ÇÏ¿© Áö³­ 07Ãá°èÇмú´ëȸºÎÅÍ ºÎ¹®º°·Î ¿î¿µÇÏ°í ÀÖ´Â ¼¼¼ÇÀÔ´Ï´Ù.
±Ý¹ø Çмú´ëȸ¿¡¼­´Â ¾Æ·¡¿Í °°ÀÌ ÁøÇàµÉ ¿¹Á¤ÀÌ¿À´Ï ȸ¿ø ¿©·¯ºÐÀÇ ¸¹Àº °ü½É ¹Ù¶ø´Ï´Ù.


* À¯¸Á °úÇбâ¼úÀÚÀÇ Á¤ÀÇ

ÃÖ±Ù 5³â À̳»¿¡ ¹Ú»çÇÐÀ§¸¦ ¹ÞÀº ÈÄ È°µ¿ ÁßÀÎ °úÇбâ¼úÀÚ³ª 5³â À̳»¿¡ ÇöÁ÷¿¡ ÀÓ¿ëµÈ ±³¼ö

¢º µ¿¿ªÇР¹× Á¦¾îºÎ¹®

À̸§(¼Ò¼Ó)

Á¦ ¸ñ

±èº´ÀÏ
(¿µ³²´ëÇб³)

ÀÚµ¿Â÷ NVH °³¼±À» À§ÇÑ ½º¸¶Æ® ½ºÆ®·°ÃÄÀÇ ¸ð¼Ç Á¦¾î ¹× ¸ðµ¨ ±â¹Ý ½½¶óÀ̵ù ¸ðµå Á¦¾î±âÀÇ °³¹ß

µµÇö¹Î
(KIMM)

·Îº¿ ¼¿ »ý»ê °øÁ¤¿ë ¾çÆȷκ¿ ¼³°è ¹× ÈÞ´ëÆù »ý»ê °øÁ¤¿¡ÀÇ Àû¿ë

¢º À¯Ã¼°øÇкι®

À̸§(¼Ò¼Ó)

Á¦ ¸ñ

ÀÌÃ濱
(Çѱ¹Ç×°ø´ëÇб³)

Ç¥¸é¿¡¼­ÀÇ À¯Ã¼¿ªÇÐ(Liquid Dynamics at Interfaces)

±è´ë°â
(Çѱ¹°úÇбâ¼ú¿ø)

»ýü¸ð¹æÀ» ÀÌ¿ëÇÑ À¯Ã¼ ¿îµ¿¿¡³ÊÁö ¹ßÀü °¡´É¼º¿¡ ´ëÇÑ ¿¬±¸(Bio-inspired fluid kinetic energy harvesting)

¢º ½Å·Ú¼ººÎ¹®

À̸§(¼Ò¼Ó)

Á¦ ¸ñ

¹éµ¿Ãµ
(KIMM)

½Å·Ú¼º °øÇÐÀÇ Àû±ØÀû °³ÀÔ: »ç·Ê ¹× ±â¹ý¼Ò°³

È«¼º±¸
(Çѱ¹Ç¥ÁØ°úÇבּ¸¿ø)

½ÖÁ¤ À¯±â ÁýÇÕÁ¶Á÷ Á¦¾î¸¦ ÀÌ¿ëÇÑ ¸¶±×³×½· ÇÕ±Ý ¿ªÇй°¼º Çâ»ó

¢º ¹ÙÀÌ¿À°øÇкι®

À̸§(¼Ò¼Ó)

Á¦ ¸ñ

±è´ë±Ù
(´Ü±¹´ëÇб³)

Development of 3D Microscopic Imaging System in Biology and Medicine

¿ÀÀ¯±Ù
(È«ÀÍ´ëÇб³)

The Mechanisms of Non-Contact Anterior Cruciate Ligament during a Simulated Jump Landing

¢º ¸¶ÀÌÅ©·Î/³ª³ë°øÇкι®

À̸§(¼Ò¼Ó)

Á¦ ¸ñ

À̼öÀÏ
(¼­¿ï½Ã¸³´ëÇб³)

¸¶ÀÌÅ©·Î/³ª³ëĵƿ·¹¹ö ºñ¼±Çü µ¿¿ªÇÐ

¼®Áö¿ø
(¼º±Õ°ü´ëÇб³)

´ë¸éÀû ±×·¡ÇÉÀÇ Á¢Âø Ư¼º ÃøÁ¤

¼­Á¤È¯
(È«ÀÍ´ëÇб³)

Monolithic multi-dimensional micro gas chromatography and Integrated nanoplasmonic sensing system

¢º ITÀ¶Çպι®

À̸§(¼Ò¼Ó)

Á¦ ¸ñ

ÀÌÀåÈ£
(±º»ê´ëÇб³)

µµ½ÃÇü ¼ÒÇü dz·Â¹ßÀü½Ã½ºÅÛÀ» À§ÇÑ ¿øõ±â¼ú (°ø·Â ¹× ½Ã½ºÅÛ ±â¼ú ºÐ¾ß)

±èÇмº
(±¹¹æ°úÇבּ¸¼Ò)

¿µ»óÃßÀû À¯µµÅº ü°èÅëÇսùķ¹ÀÌÅÍ (System-integrated Simulator for the Missile with imaging tracker)

°­¿¬ÃÊ·Ï

 

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á01


ÀÚµ¿Â÷ NVH °³¼±À» À§ÇÑ ½º¸¶Æ® ½ºÆ®·°ÃÄÀÇ ¸ð¼Ç Á¦¾î ¹× ¸ðµ¨ ±â¹Ý
½½¶óÀ̵ù ¸ðµå Á¦¾î±âÀÇ °³¹ß

±èº´ÀÏ¢Ó(¿µ³²´ëÇб³)

Keyword : Least mean squares (LMS ¾Ë°í¸®Áò, Sliding mode control (½½¶óÀ̵ù ¸ðµå Á¦¾î), Model predictive control (¸ðµ¨ ¿¹Ãø Á¦¾î), Active vibration attenuation (´Éµ¿ Áøµ¿ Àú°¨)

Abstract : This study introduces model-based and nonlinear control techniques aimed at the reduction of hysteretic effect and for their application to active motion control. Enhanced adaptive filtering algorithms are developed with application to active vibration control for automotive applications. A feedback loop with the model predictive sliding mode control is introduced in the adaptive filtering system. The performance for new adaptive filtering algorithms is validated numerically and experimentally for different signals and other prevailing characteristics. The novel technique deals with primary peaks, sidebands, and broadband level simultaneously without a full knowledge of the unwanted signals.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á02


·Îº¿ ¼¿ »ý»ê °øÁ¤¿ë ¾çÆȷκ¿ ¼³°è ¹× ÈÞ´ëÆù »ý»ê °øÁ¤¿¡ÀÇ Àû¿ë

µµÇö¹Î¢Ó(KIMM)

Keyword : Dual-arm Robot(¾çÆÈ ·Îº¿), Robotic cell manufacturing (·Îº¿ ¼¿ »ý»ê)

Abstract : A necessity for automation in a cell production line is recently increasing and a dual arm robot draws an attention as a solution because it has a flexibility and it can work in a similar way with a human. This paper proposes a dual-arm robot which is designed for robotic cell manufacturing. Requirements for static and dynamic parameter in designing a robot are investigated through the analysis of cellular phone packaging process and dynamic simulation. Also, some implementation results in cellular phone packaging process using the proposed dual-arm robots are suggested.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á03


Ç¥¸é¿¡¼­ÀÇ À¯Ã¼¿ªÇÐ(Liquid Dynamics at Interfaces)

ÀÌÃ濱¢Ó(Çѱ¹Ç×°ø´ëÇб³)

Abstract : With the recent development of micro/nanoscale fabrication and characterization techniques, it is now possible to probe various surface-related fluid phenomena, which were not well understood before. In this presentation, I will demonstrate a few examples, where the surface has a direct influence on the relevant fluid dynamics. First, I will show how micro/nanostructures of superhydrophobic surfaces can be engineered to achieve the liquid drag reduction. Then, I will present how the interaction between surface and solutes within liquid can lead to not well-known liquid transport under non-equilibrium conditions. Finally, I will demonstrate the droplet dynamics on structured surfaces during impact and condensation.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á04


»ýü¸ð¹æÀ» ÀÌ¿ëÇÑ À¯Ã¼ ¿îµ¿¿¡³ÊÁö ¹ßÀü °¡´É¼º¿¡ ´ëÇÑ ¿¬±¸
(Bio-inspired fluid kinetic energy harvesting)

±è´ë°â¢Ó(KAIST)

Keyword : energy (¿¡³ÊÁö), bio-inspired (»ýü¸ð¹æ), flag (±ê¹ß), hydrofoil (¼öÁßÀÍ)

Abstract : The development of clean energy harvesting systems has been one of the major issues for sustainability. In this study, novel designs for harvesting fluid kinetic energy are introduced, which are inspired by various orientations of fluttering tree leaves against wind and unsteady flapping propulsion of aquatic animals. First, the dynamics of an inverted flag with a free front end and a clamped rear end are investigated experimentally in order to find the conditions for self-excited flapping motion. Compared to a general flag, this inverted flag can flutter in a much lower free-stream velocity, and it can flutter even in water of high density. Because of unsteady fluid force, the flapping inverted flag stores large elastic strain energy periodically, demonstrating its potential to energy harvesting application. Second, flow structure and energy conversion efficiency are experimentally studied for a hydrofoil in periodic pitching and heaving motions. Flow visualization using particle image velocimetry shows that a leading-edge vortex is an important flow structure in determining the optimal efficiency of the hydrofoil for given kinematic parameters such as frequency and pitching amplitude. The formation and shedding of vortex structure is closely correlated with the trend of energy conversion by pitching and heaving motions.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á05


½Å·Ú¼º °øÇÐÀÇ Àû±ØÀû °³ÀÔ: »ç·Ê ¹× ±â¹ý¼Ò°³

¹éµ¿Ãµ¢Ó(KIMM)

Keyword : Proactive reliability engineering(Àû±ØÀû ½Å·Ú¼º°øÇÐ), Semiconductors(¹ÝµµÃ¼), Supercapacitors(½´ÆÛÄ¿ÆнÃÅÍ), Thermoelectric element(¿­Àü¼ÒÀÚ)

Abstract : In general, products are delivered to customers as one time event. Consequently, reliability engineering was very limited and severely conservative due to incomplete field data and uncontrolled heavy users, and therefore reliability engineering was regarded as cost in contrast to the performance. Recently, the reliability engineering need to be more proactive due to increasing maintenance cost pressure and can be extended to the in-use time with a help of sensor technology. For instance, Boeing sells engine¡¯s service life not far from selling product itself and maintenance cost estimation and cost-reducing efforts is becoming more important in vehicle leasing business and power plant operation. In this presentation, recent proactive reliability engineering method are introduced with examples of reliability-aware design rule and assessment strategy in semiconductor industry to alleviate fabrication process development burden, and with a couple of case studies of cell balancing in supercapacitor pack and automatic temperature control module made of thermoelectric elements.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á06


½ÖÁ¤ À¯±â ÁýÇÕÁ¶Á÷ Á¦¾î¸¦ ÀÌ¿ëÇÑ ¸¶±×³×½· ÇÕ±Ý ¿ªÇй°¼º Çâ»ó

È«¼º±¸¢Ó(Çѱ¹Ç¥ÁØ°úÇבּ¸¿ø)

Keyword : Magnesium alloy(¸¶±×³×½· ÇÕ±Ý), Texture(ÁýÇÕÁ¶Á÷), Twin(½ÖÁ¤)

Abstract : Recently, texture control using deformation twin, in particular focusing on {10-12} twin, has been proven an effective means of improving the mechanical properties (tensile properties and fatigue resistance), rolling capability, and formability of wrought Mg alloys. The underlying mechanisms behind this can be understood as follows: {10-12} twinning gives rise to a crystallographic lattice rotation of 86.3o and this reoriented lattice of twinned region (i.e., twin texture) is preferred for other deformation modes (in particular detwinning and basal slip) which are difficult in initial basal texture. In this paper, we report the details of this texture control method and its applications to improve the formability and mechanical properties.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á07


Development of 3D Microscopic Imaging System in Biology and Medicine

±è´ë±Ù¢Ó(´Ü±¹´ëÇб³)

Keyword : 3D Microscopy(3Â÷¿ø Çö¹Ì°æ), two-photon absorption process(À̱¤ÀÚ Èí¼ö °úÁ¤), high-resolution imaging(°íÇØ»óµµ ¿µ»ó), high-speed imaging(°í¼Ó ¿µ»ó), optical biopsy(±¤»ý°Ë)

Abstract : Three-dimensional (3D) microscopy has been popular for last two decades especially in the biology and medicine with the invention of two-photon microscopy (TPM). The introduction of femtosecond tunable laser enables two-photon absorption process which provides several advantages such as intrinsic depth discrimination, high image contrast, low photobleaching, and low cell viability. In this talk, the instrumentation of laser scanning two-photon excitation fluorescence microscopy is introduced, and its performance is evaluated. In addition, its applications in biology and medicine are demonstrated, and further new 3D high-speed imaging technologies are described.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á08


The Mechanisms of Non-Contact Anterior Cruciate Ligament during a Simulated Jump Landing

¿ÀÀ¯±Ù¢Ó(È«ÀÍ´ëÇб³)

Keyword : Anterior cruciate ligament(Àü¹æ½ÊÀÚÀδë), Knee(¹«¸­)

Abstract : ACL injuries predispose an individual to early onset knee osteoarthritis. Mechanistic insights are needed into why these injuries occur so they can be better prevented in the future. A knowledge gap concerns the relative contributions of dynamic internal tibial torque and knee abduction moment in causing ACL strain under the large impulsive ground reactions and muscle forces typically experienced in vivo. To investigate the worst-case dynamic knee loading that causes the largest ACL strain, human cadaveric knees were tested with realistic muscle forces in a simulated pivot landing scenario and a dynamic 3D knee model simulation to replicate the in vitro experiment was developed. The results show that internal tibial torque, rather than a knee abduction moment, causes the largest ACL strains during a jump landing. An insight provided by the knee model is that due to the morphological characteristic of the tibial plateau, an abduction moment augments coupled internal tibial rotation, thereby secondarily increasing ACL strain.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á09


¸¶ÀÌÅ©·Î/³ª³ëĵƿ·¹¹ö ºñ¼±Çü µ¿¿ªÇÐ

À̼öÀÏ¢Ó(¼­¿ï½Ã¸³´ëÇб³)

Keyword : Nonlinear Dynamics(ºñ¼±Çü µ¿¿ªÇÐ), AFM microcantilever(AFM ¸¶ÀÌÅ©·Îĵƿ·¹¹ö), Nanocantilever(³ª³ëĵƿ·¹¹ö), Carbon Nanotube(ź¼Ò³ª³ëÆ©ºê)

Abstract : Dynamics of the micro/nano-cantilevers is widely applicable to MEMS resonators, AFM(atomic force microscopy) probes, and other nanoscale devices. In dynamic applications, the cantilever oscillates at a resonant frequency, and the deflections or the frequency shifts are measured by the change of the cantilever surface properties, attached mass, or the interactions between the cantilever and the base surface. In dynamic AFM, with the experiment and the simulations, the microcantilever deflection is highly nonlinear, and the surface properties can be embedded in the deflection at the frequencies other than the original resonant frequency of the cantilever. Also the multifrequency AFM includes the excitation and detection of the deflection in two or more frequencies which are higher harmonics or eigenmodes. This can overcome the limitations of conventional AFM. We reviewed the novel AFM techniques including multifrequency AFM, and their applications in many fields. The dynamics of anelectrostatically actuated CNT(carbon nanotube) cantilever are discussed with the numerical methods. The electrostatic forces and intermolecular interactions based on Lennard-Jones potential model are considered between the single-walled CNT and a graphene surface. To accomplish the nonlinear dynamic analysis of resonating CNT cantilever, we established the differential equation includes the geometric and inertial nonlinear terms due to the large deflection of the CNT cantilever under electrostatic driving forces. As aresult, the CNT cantilever shows complex nonlinear responses due to the applied AC and DC voltage. The response branches are softened at primary resonance through saddle-node(SN) bifurcation owing to the harmonic electrostatic excitation when the applied voltages are increased. And the period-doubling (PD) bifurcations are developedat primary and secondary resonance branches under the high excitation. Also the other possibilities of the CNT and MEMS microcantilevers will be presented at the session of the KSME conference 2014.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á10


´ë¸éÀû ±×·¡ÇÉÀÇ Á¢Âø Ư¼º ÃøÁ¤

¼®Áö¿ø¢Ó(¼º±Õ°ü´ëÇб³)

Keyword : Graphene(±×·¡ÇÉ), adhesion(Á¢Âø), indentation(Àε§Å×À̼Ç), delamination(¹Ú¸®)

Abstract : Graphene, an atomically thin carbon material, has been widely studied for flexible electronics because of its outstanding electrical, mechanical, and optical properties. For example, graphene has been utilized for flexible and transparent loudspeakers by using thermoacoustic sound generation. However, the development of reliable devices having high mechanical flexibility requires fundamental understanding of adhesion characteristics of graphene to supporting materials. In this talk, I will discuss the adhesive interactions of large-area graphene measured at nanoscale and mesoscale. The large-area monolayer graphene was synthesized by chemical vapor deposition on copper with hydrocarbon precursors. Nanoscale measurements using high sensitive nanoindentation showed nonlinear adhesive interactions of graphene to the surface of the indenter. Mesoscale measurements utilized facture mechanics by mechanically delaminating graphene from the substrates. The works showed interesting adhesive interactions of graphene to various materials including diamond, silicon oxide, and copper surfaces.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á11


Monolithic multi-dimensional micro gas chromatography and Integrated nanoplasmonic sensing system

¼­Á¤È¯¢Ó(È«ÀÍ´ëÇб³)

Keyword : MEMS, LSPR, Plasmon, Micro, Nano, Optofluidics

Abstract : This study reports a significant advancement towards development of a novel multi stage monolithically integrated micro chromatography (¥ìGC) device for detection of low concentration volatile organic compounds (VOCs). The technology enabled by the monolithic ¥ìGC eventually results in high speed chromatographic separations and detection of VOCs at various locations. Here, both of the fundamental aspects of the study and the potential application of our micro-device are described. The nanophotonic systems integrated with microfluidic devices on the basis of nanoplasmonics have great promise to the research fields in nano engineering and analytical chemistry engineering as a whole. These label-free nanoplasmonic sensor platforms based on optofluidics permit to detect protein molecules secreted from cells, which is useful for human blood immunophenotyping.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á12


µµ½ÃÇü ¼ÒÇü dz·Â¹ßÀü½Ã½ºÅÛÀ» À§ÇÑ ¿øõ±â¼ú (°ø·Â ¹× ½Ã½ºÅÛ ±â¼ú ºÐ¾ß)

ÀÌÀåÈ£¢Ó(±º»ê´ëÇб³)

Keyword : Urban Small Wind Turbine (µµ½ÃÇü ¼ÒÇüdz·Â), Digital Wind Tunnel (µðÁöÅРdzµ¿), Original Wing Profile (°íÀ¯ÀÍÇü), Down Scale Test (Ãà¼Ò½ÃÁ¦½ÃÇè), Break through Technology for Aerodynamic and System Part(°ø·Â ¹× ½Ã½ºÅۺоßÀÇ ¿øõ±â¼ú)

Abstract : Recent results of break though technology of aerodynamic and system part for urban small wind turbines will be presented with detail data in the presentation for this conference. The research has been performed in two areas of analysis and test for last five years, and focused to develop new type shape of airfoil, wind turbine blade, and wind-heat generator. In analytical part, new numerical code for the vertical and horizontal axis wind turbine were developed, respectively. Especially for the vertical system, except our code, not much works are available in analysis and design code, even though it has the world market share of 30% in small wind turbine. In our code, the new scheme is developed to calculate lift and drag using real air velocity on the rotating blade, and verified to match well test data. For the test technology for down scale wind turbine with lab scale wind tunnel, the digital wind tunnel and the small torque measuring systems with motor and brake are developed, and used for the measure of force on airfoil in air flow and power coefficient of wind turbine blade. With the test technology, the performance of our newly developed two airfoils of KA1 and KA2 with thickness ratio of 22% and 14% has been verified. Our original wing shapes are developed from analyze of test cases, which was carried out by orthogonal test plan with four key variables. Finally, new innovative research results of wind-heat generator will be introduced with test data. It will be shown that wind energy can be transformed to heat energy without electrical energy. From this results, new market developing will be expected in the place of fishing and farm village where heat energy is more preferred and needed than electric energy. People don¡¯t need to use expensive electricity to make heat, instead of this, wind-heat generator can be used to make heat from free resource of wind energy. Moreover, it also can be used as a good heat source for preventing icing road of bridge.

´ëÇѱâ°èÇÐȸ 2014³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á13


¿µ»óÃßÀû À¯µµÅº ü°èÅëÇսùķ¹ÀÌÅÍ
(System-integrated Simulator for the Missile with imaging tracker)

±èÇмº¢Ó, Á¤µ¿±æ(±¹¹æ°úÇבּ¸¼Ò)

Keyword : system-integrated simulator, M&S, missile

Abstract : A multi-purpose man-portable guided missile or so-called 3rd-generation infantry anti-tank missile is a compact-size tactical weapon. Like a smart phone, it requires state-of-the-art technologies of electronics, mechanics, computer vision, and so on for the lightness and compactness. To achieve the maximum capability of the missile system, the integrated optimization of on-board software and mechanical hardware is indispensable. System-integrated simulator for the missile with IIR seeker has been developed through the Korean medium-range infantry missile project. The simulator is an M£¦S tool for the analysis of the converged system, i.e. imaging tracker, two-axis gimbal dynamics, and homing guidance. The tool mainly consists of physics-based infrared imagery generator, image tracking program and missile 6 degree-of-freedom program. By means of the M£¦S tool, the system performance can be assessed in various tactical operation conditions, which cannot be covered by limited number of test fires. Consequently, the M£¦S tool enables the developer to save much cost and resources due to the numerous test fires. It is expected the M£¦S tool can be applied to the other weapon systems which adopt imaging tracker or surveillance £¦ reconnaissance systems.

 

(»ç)´ëÇѱâ°èÇÐȸ
´ëÇ¥ÀÚ: ±èµ¿È¯ ¤Ó °íÀ¯¹øÈ£ : 220-82-01671 l [06130] ¼­¿ï½Ã °­³²±¸ Å×Çì¶õ·Î 7±æ 22 Çѱ¹°úÇбâ¼úȸ°ü 1°ü 702È£,
Tel : (02) 501 - 3646, 3647, 3648, 5305, 5035, 6046, 6056, 6061 l FAX:(02) 501-3649 l E-mail : ksme@ksme.or.kr
´ã´ç/¹®ÀÇó