Session Track
November 03 (Friday)
CAE 기타
Oral,
제14발표장(402A호),
08:40~09:40
- 김도년(서울대)
Fr14A-3
08:40~09:40
마이크로 유전알고리즘을 이용한 리튬이온배터리 비에너지밀도 최적화
Nowadays, lithium-ion batteries are used in a wide range of fields due to their high density/high power strengths compared to conventional nickel/hydrogen secondary batteries. Optimizing the parameters of a battery cell is known to be an effective way to improve battery performance. This study presents a specific energy density optimization method for a lithium-ion battery cell using a micro-genetic algorithm. As a result of the optimization, the specific energy density was improved by 26.7%.
Keywords : Lithium-ion battery(리튬이온배터리), Specific energy density (비에너지밀도), Micro-Genetic Algorithm(마이크로-유전알고리즘)
Paper : Fr14A-3.pdf
(사)대한기계학회, 서울시 강남구 테헤란로 7길 22 한국과학기술회관 신관 702호, Tel: (02)501-3646~3648, E-mail: ksme@ksme.or.kr