Loading...
Çà»çÀÇ ÁÖ¿ä³»¿ë ¾È³»
Çà»çÀÇ ÁÖ¿ä ³»¿ë [Çà»ç¸íÀ» Ŭ¸¯ÇϽøé ÀÚ¼¼ÇÑ »çÇ×À» º¸½Ç ¼ö ÀÖ½À´Ï´Ù.]

³í¹® ¹ßÇ¥
Ưº° °­¿¬
ÃÊû °­¿¬
À¯¸Á°úÇбâ¼úÀÚ ¼¼¼Ç
International Session

ÁöÁ¤¾÷ü ¼¼¼Ç
¿¬±¸ÀÚµéÀ» À§ÇÑ ÁöÀç±Ç Ư°­
Á¤Ã¥ Ưº°¼¼¼Ç

ȯ¿µÆÄƼ/ÆòÀÇ¿øȸ
Á¤±âÃÑȸ/¸¸Âù
Á¦2ȸ Àü±¹ ´ëÇлý ¼³°è °æÁø´ëȸ
Á¦4ȸ Àü±¹ ´ëÇлý À¯Ã¼°øÇÐ °æÁø´ëȸ
»ê¾÷ü Åõ¾î
ȸ¿ø Ä£¸ñ Çà»ç
±â°è°ü·Ã ±â±â ¹× ¼­Àû Àü½Ã

³í¹® ¹ßÇ¥ ¾È³»

³í¹®¹ßÇ¥½Åû ¿ä·É

¿Â¶óÀÎ»ó¿¡ ³í¹®Á¦¸ñ/Å°¿öµå(¿µ¹®,±¹¹®)/Abstract(¿µ¹®À¸·Î¸¸ ÀÛ¼º)/ÀúÀÚ¸í(¼Ò¼Ó,À̸ÞÀÏ Æ÷ÇÔ) ÀÔ·Â
ÃÊ·ÏÀº ÆÄÀÏ·Î Á¢¼öÇÏÁö ¾ÊÀ¸¸ç, ¿Â¶óÀÎ ÀԷ»çÇ×ÀÌ ÃÊ·ÏÁý¿¡ ¹Ý¿µµÊ.

ºñȸ¿øÀº »çÀüµî·Ï ÈÄ ¹ßÇ¥½Åû °¡´É

Full paper Á¦Ãâ ¿ä·É

1. [¹ßÇ¥³í¹® Á¦Ãâ ¹× ¼öÁ¤]Ŭ¸¯
2. Á¤È¸¿ø ¶Ç´Â ºñȸ¿ø ¼±ÅÃ
3. Á¦Ãâ³í¹® ¸®½ºÆ®¿¡¼­ '³í¹®¹øÈ£' ¶Ç´Â '³í¹®Á¦¸ñ' Ŭ¸¯
3. µî·ÏµÈ Abstract °ËÅä ÈÄ ¾Æ·¡ '¼öÁ¤' Ŭ¸¯
4. ¿ø¹® ¾÷·Îµå¿¡
HWPÆÄÀÏ È¤Àº DOCÆÄÀÏ ¾÷·Îµå
(´Ü, ¿ø¹® ¾÷·Îµå Àü¿¡ ¹Ýµå½Ã »çÀüµî·Ï °áÀ縦 ¿Ï·áÇÏ¼Å¾ß ÇÕ´Ï´Ù.)

Full paper ÀÛ¼º ¿ä·É

[³í¹®¿ø¹®¾ç½Ä.hwp ´Ù¿î·Îµå] [³í¹®¿ø¹®¾ç½Ä.doc ´Ù¿î·Îµå]
ºÐ ·® : ¹Ýµå½Ã 6¸é(±×¸² ¹× Ç¥ µî Æ÷ÇÔ) À̳»·Î ÀÛ¼º¿ä¸Á
ÆÄÀÏÁ¾·ù : HWP ȤÀº DOC Á¦Ãâ (³í¹®Á¦Ãâ ¼­Ã¼ Á¤µ· ¿ä¸Á)
»ê¾÷ü ¼Ò¼Ó ȸ¿ø : ³í¹®¿ø°í ÀÛ¼º¿ä·É Áß Ã¹ ¸é¸¸ ÁؼöÇÏ°í, ´ÙÀ½ ¸éºÎÅÍ´Â A4¿ëÁö Å©±â¿¡ ÀÚÀ¯·Î¿î Çü½ÄÀ¸·Î ÀÛ¼º °¡´É




¹ßÇ¥½Åû : 8¿ù 13ÀÏ(¿ù)~9¿ù 5ÀÏ(¼ö)~9¿ù 9ÀÏ(ÀÏ)
¹ßÇ¥ÀÚ »çÀüµî·Ï ±â°£ : 9¿ù 12ÀÏ(¼ö)~9¿ù 16ÀÏ(ÀÏ) * 16ÀÏ ÀÌÈÄ Á¦¸ñ,ÀúÀÚ,ÃÊ·Ï,Å°¿öµå ¼öÁ¤ºÒ°¡
¹ßÇ¥³í¹® Á¦Ãâ : ~9¿ù 12ÀÏ(¼ö)~9¿ù 16ÀÏ(ÀÏ)

¼öÁ¤ÆÄÀÏ Á¦Ãâ ¸¶°¨ : 9¿ù 27ÀÏ(¸ñ)

¹ßÇ¥½Åû ±â°£ : ¿ÞÂÊÀÇ [¹ßÇ¥³í¹® Á¦Ãâ ¹× ¼öÁ¤] ¸Þ´º Ŭ¸¯

³í¹®¹ßÇ¥ ¹æ¹ý

¹ßÇ¥ÀÚÀÇ Èñ¸Á¿¡ µû¶ó ±¸µÎ¹ßÇ¥¿Í Æ÷½ºÅ͹ßÇ¥·Î ³ª´©´Â °ÍÀ» ¿øÄ¢À¸·Î Çϳª, ¹ßÇ¥³í¹® Á¢¼ö ÈÄ, ±¸µÎ¹ßÇ¥ÀÚ°¡ ¿¹»óº¸´Ù ¸¹À» ¶§¿¡´Â Çà»çÀÇ ¿øÈ°ÇÑ ¿î¿µÀ» À§ÇÏ¿© Á¶Á÷À§¿øȸ¿¡¼­ ±¸µÎ ¶Ç´Â Æ÷½ºÅÍ ¹ßÇ¥ ¿©ºÎ¸¦ °áÁ¤ÇÒ ¿¹Á¤ÀÓ.

* ¹ßÇ¥ÀÚ´Â ¹Ýµå½Ã »çÀüµî·ÏÀ» ¿Ï·áÇØ¾ß ÇÔ.
* ±¸µÎ ¶Ç´Â Æ÷½ºÅÍ ¹ßÇ¥½Ã °øµ¿ÀúÀÚÀÇ Âü¼®À» ¿øÄ¢À¸·Î ÇÔ.

¹ßÇ¥¾È³» : ¨ç ±¸ µÎ ¹ß Ç¥ - 15ºÐ(¹ßÇ¥ 12ºÐ, ÁúÀÇ 3ºÐ) (¿¹Á¤)
- ¹ßÇ¥Àå¿¡ Beam Projector ¹× ³ëÆ®ºÏPC´Â ÁغñµÇ¾î ÀÖÀ¸³ª, ¹ßÇ¥ÀÚÀÇ ¹ßÇ¥Àڷκ° ÇÁ·Î±×·¥ ȣȯ¼º ¹®Á¦µîÀÌ ¹ß»ýÇÒ ¼ö ÀÖÀ¸¹Ç·Î º»ÀÎ ³ëÆ®ºÏ PCÁöÂü ¿ä¸Á!
- ÇØ´ç ¼¼¼Ç ½ÃÀÛ 10ºÐÀü±îÁö ¹ßÇ¥Àå¿¡ µµÂø ÈÄ ÁÂÀå²² ¾Ë¸²

¨è Æ÷½ºÅ͹ßÇ¥ - 50ºÐ
- ÁöÁ¤µÈ Æгο¡ ÁغñµÈ Æ÷½ºÅÍ ºÎÂø

[ Æ÷½ºÅ͹ßÇ¥¹æ¹ý.hwp, Æ÷½ºÅ͹ßÇ¥¹æ¹ý.pdf, Æ÷½ºÅ͹ßÇ¥¹æ¹ý.zip ]
- ÇØ´ç ¼¼¼Ç ½ÃÀÛ 20ºÐ Àü±îÁö Æ÷½ºÅÍ ºÎÂø ÈÄ ÁÂÀå²² ¾Ë¸²

¨é °­ ¿¬ - 30ºÐ (¿¹Á¤)

³í¹®ÀÇ ½É»ç ¹× ¹ßÇ¥ ½ÂÀÎ

¨ç ÇÐȸ ÅÛÇø´ »ç¿ë ¿©ºÎ, ³í¹®ÀÇ ±ÔÁ¤¾ç½Ä Áؼö ¹× ³»¿ë µîÀ» ½É»çÇÏ¿© äÅÃµÈ ³í¹®¿¡ ÇÑÇÏ¿© Çмú´ëȸ °ÔÀç ¹× ¹ßÇ¥¸¦ ½ÂÀÎ(E-mail °á°úÅ뺸)
¨è Çмú´ëȸÀÇ ¹ßÇ¥ ¼¼¼Ç ¹× ³í¹®ÀÇ ½É»ç, ¼±Á¤ µîÀº Á¶Á÷À§¿øȸ Ã¥ÀÓÇÏ¿¡ ÁøÇà

Ưº°¼¼¼Ç ³í¹®

¨ç 1°³ ¼¼¼ÇÀÌ 4~5Æí Á¤µµÀÇ ³í¹®À¸·Î ±¸¼ºµÇµµ·Ï ¸ð¾Æ¼­ Á¦Ãâ
¨è ¼¼¼Ç¸í, ¼¼¼Ç Ã¥ÀÓÀÚ(¼Ò¼Ó,¿¬¶ôó), ÁÂÀå(¼Ò¼Ó, ¿¬¶ôó), ±¸¼º³í¹® Á¦¸ñ(¹ßÇ¥ÀÚ)À» Àû¾î ÇØ´ç ºÎ¹®¿¡ ½Åû
¨é µ¿ ³í¹®µµ ÀÏ¹Ý³í¹®ÀÇ Á¦ÃâÀÏÁ¤(9¿ù 5ÀÏ/ 9¿ù 12ÀÏ)¿¡ µû¶ó ÇÐȸ¿¡ Á¢¼öÇÏ¿© ½É»ç, ¹ßÇ¥ ½ÂÀÎ µî ÀýÂ÷¸¦ ¹â¾Æ¾ß ÇÔ

Ưº°°­¿¬ ¾È³»

Ưº°°­¿¬ [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

¿¬»ç(¼Ò¼Ó)

Á¦¸ñ

±èõ¿í(¿¬¼¼´ëÇб³)

Çѱ¹ÀÇ ±â°è°ø¾÷, ±× ÅÍÀü¿¡ ¼­¼­

Çѱ⼱(µÎ»êÁß°ø¾÷)

»ç¶÷ÀÌ ¹Ì·¡´Ù

ÃÖÅÂÀÎ(KIMM)

±â°è»ê¾÷ÀÇ ¹Ì·¡

 

<<Çѱ¹ÀÇ ±â°è°ø¾÷, ±× ÅÍÀü¿¡ ¼­¼­>>

±èõ¿í  ¿¬¼¼´ëÇб³ ±³¼ö

1973³â 1¿ù 15ÀÏ ¿¬µÎ±âÀÚȸ°ß¿¡¼­ ¹ÚÁ¤Èñ ´ëÅë·ÉÀÌ ¹ßÇ¥ÇÑ [ÁßÈ­Çаø¾÷È­¼±¾ð]Àº Çѱ¹ÀÇ »ê¾÷Çõ¸íÀÇ ±âÆøÁ¦°¡ µÇ¾ú´Ù.  1972³â±îÁö Çѱ¹¿¡ ±Ù´ë°ø¾÷ÀÌ ÀÖ±â´Â ÇÏ¿´À¸³ª ÁøÁ¤ÇÑ Àǹ̿¡¼­ ¼¼°èÀû ¼öÁØ¿¡´Â ¾î¸²µµ ¾ø´Â À¯Ä¡ÇÑ ´Ü°è¿¡ ÀÖ¾ú´Ù.  ÀÌ ´ë´ãÇÑ Á¤Ã¥¼±¾ðÀº ¹æÀ§»ê¾÷±¸ÃàÀ̶ó´Â ±¹°¡Àû ¸íÁ¦À§¿¡ ¼¼¿öÁø °ÍÀ̱â´Â ÇÏ¿´À¸³ª, Àü½ÃüÁ¦µµ ¾Æ´Ñ »óȲ¿¡¼­ ¼±Áø±¹À¸·ÎÀÇ ÁøÀÔÀ» Á¤ºÎ°¡ ÁÖµµÇÑ ÆÄ°ÝÀûÀÎ °æÁ¦Á¤Ã¥À̾ú´Ù.  1945³â Á¦2Â÷¼¼°è´ëÀü ÀÌÈÄ ½Å»ýµÈ ¸¹Àº ³ª¶ó °¡¿îµ¥ À¯µ¶ Çѱ¹¸¸ÀÌ ¼±Áø±¹ ´ë¿­¿¡ ÇÕ·ùÇÒ ¼ö ÀÖ°Ô µÈ °ÍÀº ÁßÈ­Çаø¾÷ÀÇ ¹ÙÅÁÀ§¿¡¼­ ÀÌ·èµÇ¾úÀ½Àº ¼¼°è°¡ ¾Ë°í ÀÖ´Ù.  ¾î¶² °³¹ßµµ»ó±¹µµ ÀÌ·± ½Ãµµ¸¦ ÇÏÁö ¸øÇß´Ù.  ±×·¯³ª ¿ì¸®´Â Çß°í ±×·¡¼­ ¿ì¸®´Â ÈÄÁø±¹À̶ó´Â ±¼¿åÀ» À̱â°í Èļ¼¿¡ ÀÚ¶û½º·¯¿î ³ª¶ó¸¦ ÀüÇØÁÙ ¼ö ÀÖ°Ô µÇ¾ú´Ù.
 ÁßÈ­Çаø¾÷È­¼±¾ðÀÇ Çٽɰø¾÷Àº ±â°è°ø¾÷À̾ú´Ù.  ±â°è°ø¾÷ÀÇ ¹ßÀüÀº ½Ã¼³ÀÇ Çö´ëÈ­»Ó ¾Æ´Ï¶ó ÀηÂÀÇ Çö´ëÈ­, °æ¿µÀÇ Çö´ëÈ­ µî Á¾ÇÕÀûÀÎ ¿©°Ç¸¶·ÃÀÌ ÇʼöÀûÀÌ´Ù.  ÀÌ·± Ư¡ ¶§¹®¿¡ Àå±â°£ÀÇ Àγ»¿Í ÅõÀÚ¾øÀÌ´Â ¼º°øÇÒ ¼ö ¾ø°í µû¶ó¼­ [ÇÑ°­ÀÇ ±âÀû]ÀÌ ÀÌ·ç¾îÁø ¹ÙÅÁ¿¡´Â ¸¹Àº Èñ»ýÀÌ µû¶ú´Ù.  ±× Èñ»ý¿¡´Â ¹ÎÁÖÈ­¿îµ¿ÀÇ Èñ»ýÀÚµé »Ó ¾Æ´Ï¶ó, ¿ì¼öÇÑ ¸Ó¸®¸¦ °¡Áö°íµµ ¾ÈÀÌÇÑ Á÷¾÷À» ¸¶´ÙÇÏ°í ±â°è°ø¾÷¿¡ Á¾»çÇÑ ¸ðµç ±¹¹ÎÀÇ Èñ»ýµµ Æ÷ÇԵȴÙ.
 ¾ÕÀ¸·Î Çѱ¹ÀÇ ±â°è°ø¾÷ ³ª¾Æ°¡ Á¦Á¶¾÷À» À¯ÁöÇÏ·Á¸é, ³ëµ¿ÀÇ À¯¿¬¼º È®º¸´Â ¹°·Ð 21¼¼±â »õ·Î¿î âÁ¶Àû ±â¼úÀÇ °³¹ßÀ» ¿ä±¸¹Þ´Â´Ù.  ¿©±â¿¡´Â ³ëµ¿ÀÚµéÀÇ Èñ»ýÀº ¹°·Ð ¿ì¼öÇÑ ÀÎÀçµéÀÇ Èñ»ý±îÁö ¿ä±¸µÉ °ÍÀÌ´Ù.  ¿À´Ã ±â°è°ø¾÷ÀÇ ¿ä¶÷ÀΠâ¿ø¿¡¼­ ¼±Áø±¹¿¡ ´ç´çÇÏ°Ô ÀÔ¼ºÇÑ ´ëÇѹα¹ÀÇ ¹Ì·¡¸¦ »ý°¢ÇØ º»´Ù.

¿¬»ç ¼Ò°³  ±èõ¿í  ¿¬¼¼´ëÇб³ ±³¼ö

¢¹1936³â 11¿ù 17ÀÏ Ãâ»ý
¢¹
1959³â 3¿ù 24ÀÏ  ¼­¿ï´ëÇб³ °ø°ú´ëÇÐ ±â°è°øÇаú Á¹¾÷
¢¹
1963³â 2¿ù 26ÀÏ  ¼­¿ï´ëÇб³ ´ëÇпø ¼®»ç°úÁ¤ À̼ö(±â°è°øÇÐ)
¢¹
1963³â 3¿ù 1ÀÏ   ¿¬¼¼´ëÇб³ ÀÌ°ø´ëÇÐ ÀüÀÓ°­»ç
¢¹
1972³â 3¿ù 18ÀÏ  ¹Ì±¹ University of Florida Ph.D.(ÀÀ¿ë¿ªÇÐ)
¢¹
1973³â 3¿ù 1ÀÏ   ¹®±³ºÎ Àü¹®À§¿ø(ÁßÈ­Çаø¾÷±³À°)
¢¹
1973³â 8¿ù 30    °ú±âó ¿øÀڷξÈÀü½É»çÀ§¿ø
¢¹
1977³â 11¿ù 28  »ó°øºÎ ±â°è±â¼ú¿¬±¸´Ü À§¿ø
¢¹
1981³â 11¿ù 17ÀÏ ±³ÅëºÎ Â÷·®Çü½Ä½ÂÀνɻçÀ§¿ø
¢¹
1993³â 1¿ù  1ÀÏ  ´ëÇѱâ°èÇÐȸ ȸÀå
¢¹
1993³â 5¿ù 12ÀÏ  Çѱ¹°øÇб³À°ÇÐȸ ÃÊ´ëȸÀå
¢¹
2002³â 2¿ù 28ÀÏ  ¿¬¼¼´ëÇб³ ¸í¿¹±³¼ö(Á¤³âÅðÀÓ)
¢¹
2004³â 3¿ù 27ÀÏ  Çб³¹ýÀÎ »õºûÇпø ÀÌ»ç

<<±â°è»ê¾÷ÀÇ ¹Ì·¡>>

ÃÖÅÂÀÎ Çѱ¹±â°è¿¬±¸¿ø ¿øÀå

º» °­¿¬¿¡¼­´Â ±â°è»ê¾÷ÀÇ ¹Ì·¡ ¹ßÀü ¹æÇâÀ» ±¹³»¿Ü ÁÖ¿ä ±â°üÀÌ ¼±Á¤ÇÑ ¹Ì·¡ À¯¸Á±â¼ú Ç®(Pool)¿¡ ´ëÇÑ ºÐ¼®°ú ±â°è»ê¾÷ ¼­ºñ½ºÈ­(Servitization), ±×¸®°í BOP(Bottom of Pyramid, ÃÖÇÏ ¼Òµæ °èÃþ)
½ÃÀåÀ¸·ÎÀÇ ÁøÃâ°ú Çõ½ÅÀ¸·Î ³ª´©¾î Àü¸ÁÇÏ°íÀÚ ÇÑ´Ù. ¸ÕÀú ¹Ì·¡ À¯¸Á±â¼ú Ç®¿¡¼­ ³ªÅ¸³­ ±â°è±â¼úÀÇ ¸ð½À°ú ¿ªÇÒÀ» »ìÆ캸°í, ÇâÈÄ R&D ¹æÇâÀ» Á¦½ÃÇÏ°íÀÚ ÇÑ´Ù. ±â°è»ê¾÷ ¼­ºñ½ºÈ­´Â ºÎ°¡°¡Ä¡ÀÇ Ç϶ô.°í¿ë âÃâ È¿°úÀÇ °¨¼Ò¸¦ ±Øº¹ÇÏ°í Áß±¹ µî °³µµ±¹ Ãß°Ý¿¡ ´ëÇÑ Â÷º°È­ °üÁ¡¿¡¼­ ±¹³» ±â°è»ê¾÷°è°¡ ¹Ýµå½Ã ÃßÁøÇؾßÇÒ °æÀï Àü·«ÀÓÀ» Á¦¾ÈÇÏ°í, ¼º°øÀûÀÎ ¼­ºñ½ºÈ­ ÃßÁø ¹æ¾ÈÀ» Á¦½ÃÇÏ°íÀÚ ÇÑ´Ù. ¸¶Áö¸·À¸·Î ÇÏ·ç 2´Þ·¯ À̳»ÀÇ »ýÈ°ºñ·Î »ì¾Æ°¡´Â 40¾ï ¸íÀÇ °èÃþÀ» ÀǹÌÇÏ´Â BOP ½ÃÀåÀº ÇâÈÄ ½ÅÈï±¹ ½ÃÀåÀÇ °æÁ¦ ¼ºÀå¿¡ µû¶ó Æø¹ßÀûÀÎ ±¸¸Å·Â Áõ°¡°¡ ±â´ëµÈ´Ù´Â Á¡¿¡¼­ ±¹³» ±â°è»ê¾÷ÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀå¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀδÙ.
¡Ø Âü°í
±â°è»ê¾÷ ¼­ºñ½ºÈ­: ¼öÀÍ Ã¢ÃâÀ» À§ÇØ ±âÁ¸ ºñÁî´Ï½º È°µ¿ °³¼± ¶Ç´Â »õ·Î¿î ºñÁî´Ï½º È°µ¿À» Ãß°¡ÇÏ´Â ÇüÅ·ΠÁ¦Ç°°ú ¼­ºñ½º¸¦ ÅëÇÕ Á¦°ø(Integrated Offering)ÇÏ¿© Â÷º°È­µÈ °¡Ä¡¸¦ Á¦°øÇÏ´Â ºñÁî´Ï½º ¸ðµ¨
BOP(Bottom of Pyramid): ÇÏ·ç 2´Þ·¯ À̳»ÀÇ »ýÈ°ºñ·Î »ì¾Æ°¡´Â °èÃþÀ¸·Î Àü¼¼°èÀûÀ¸·Î 40¾ï ¸íÀÌ ÀÌ¿¡ ÇØ´çÇÏ¸ç ½ÃÀå ±Ô¸ð·Î´Â 2007³â PPP(Purchasing Power Parity, ±¸¸Å·Â Æò°¡) ±âÁØ ¾à 5Á¶ ´Þ·¯¿¡ ´ÞÇÔ(World Resource Institute, 2007)A

¿¬»ç ¼Ò°³  ÃÖÅÂÀÎ  Çѱ¹±â°è¿¬±¸¿ø ¿øÀå

¡Ü ÇÐ ·Â ¼­¿ï´ëÇб³ ÀÀ¿ë¹°¸®ÇÐ('74, Çлç), ¹Ì±¹ Ç÷θ®´Ù´ëÇпø Àü±â°øÇÐ('80,¼®»ç), ¹Ì±¹ Ç÷θ®´Ù´ëÇпø Àü±â°øÇÐ('84, ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â ±¹¹æ°úÇבּ¸¼Ò ±â¼ú°³¹ß ºÎÀå, ÇØ»ó½ÃÇèÀåÀå(1992~2000), ±¹¹æ°úÇבּ¸¼Ò Ç׸¸°¨½Ãü°è»ç¾÷Ã¥ÀÓÀÚ(2000~2002), ±¹¹æ°úÇבּ¸¼Ò ±â¼úÇù·ÂºÎÀå(2002~2004), ±¹¹æ°úÇבּ¸¼Ò º»ºÎÀå(2004~2005), ±¹¹æ°úÇבּ¸¼Ò ºÎ¼ÒÀå(2005~2010), ±¹¹æ°úÇבּ¸¼Ò Á¤Ã¥À§¿ø(2011), Çѱ¹°úÇбâ¼ú¿ø Çؾç½Ã½ºÅÛ°øÇаú ´ë¿ì±³¼ö(2011)

¿¬±¸ÀÚµéÀ» À§ÇÑ ÁöÀç±Ç Ư°­ ¾È³»

¿¬±¸ÀÚµéÀ» À§ÇÑ ÁöÀç±Ç Ư°­

 

¿¬±¸ÀÚµéÀ» À§ÇÑ ÁöÀç±Ç(IPR) °ü¸® ¹× ħÇØ(ºÐÀï) ´ëÀÀ ³ëÇÏ¿ì

±è¸íÂù  Æ¯Çãû

I.  Áö½ÄÀç»êÀÇ Á߿伺
II. Áö½ÄÀç»ê±Ç °³¿ä
III, ƯÇãÁ¦µµÀÇ ÁÖ¿ä³»¿ë
IV. ºÐÀï ´ëÀÀÀ» À§ÇÑ °­ÇÑ Æ¯Çã âÃâ
V. ƯÇãÁ¤º¸ ¼­ºñ½º
VI. ƯÇãûÀÇ ÁÖ¿ä Áö¿ø½ÃÃ¥

Á¤Ã¥ Ưº°¼¼¼Ç ¾È³»

Á¤Ã¥ Ưº°¼¼¼Ç [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

 

¿¬»ç(¼Ò¼Ó)

Á¦¸ñ

¿ìÅÂÈñ(Áö½Ä°æÁ¦ºÎ)

Áö½Ä°æÁ¦ R&D Á¤Ã¥ ¹× Á¦µµ °³¼± ¾È³»

 

<<Áö½Ä°æÁ¦  R&D Á¤Ã¥ ¹× Á¦µµ °³¼± ¾È³»>>

¿ìÅÂÈñ  Áö½Ä°æÁ¦ºÎ ±¹Àå

1.Áö½Ä°æÁ¦ R&D »ç¾÷ÇöȲ ¹× Á¦µµ°³¼±

¤· Áö½Ä°æÁ¦ R&D »ç¾÷ÇöȲ
  - 2012³â Á¤ºÎ R&D¿¹»ê±Ô¸ð ¹× ÁÖ¿ä Áö¿øÇöȲ
¤· KEIT ±âȹÆò°¡°ü¸® Á¦µµ °³¼± ÇöȲ
  - µµÀüÀû R&D¸¦ À§ÇÑ Á¦µµ°³¼±
  - µ¿¹Ý¼ºÀå R&D¸¦ À§ÇÑ Á¦µµ°³¼±
  - ½Å·Ú¹Þ´Â R&D¸¦ À§ÇÑ Á¦µµ °³¼±

2. R&D ÀüÁֱ⠼­·ù Á¦Ãâ °£¼ÒÈ­ ¹æ¾È
- ÃßÁø¹è°æ ¹× ÁÖ¿ä³»¿ë

¿¬»ç ¼Ò°³  ¿ìÅÂÈñ  Áö½Ä°æÁ¦ºÎ ±¹Àå

¡Ü Çз : ¹è¹®°íµîÇб³ Á¹/¿¬¼¼´ëÇб³ ÇàÁ¤Çаú Çлç/¼­¿ï´ëÇб³ ÇàÁ¤´ëÇпø/Ķ¸®Æ÷´Ï¾Æ´ëÇб³ ¹öŬ¸®Ä·ÆÛ½º ´ëÇпø

¡Ü ÁÖ¿ä°æ·Â : Á¦27ȸ ÇàÁ¤°í½Ã ÇÕ°Ý/Áö½Ä°æÁ¦ºÎ ¿¡³ÊÁöÀý¾àÃßÁø´Ü ´ÜÀå/Áö½Ä°æÁ¦ºÎ Áַ»ê¾÷Á¤Ã¥°ü/Áö½Ä°æÁ¦ºÎ ¹«¿ªÅõÀÚ½Ç Åë»óÇù·ÂÁ¤Ã¥°ü/Çö Áö½Ä°æÁ¦ºÎ »ê¾÷°æÁ¦½Ç »ê¾÷±â¼úÁ¤Ã¥°ü

ÃÊû°­¿¬ ¾È³»

ÃÊû°­¿¬ [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

ºÎ¹®

¿¬»ç(¼Ò¼Ó)

Á¦¸ñ

Àç·á ¹× Æı«ºÎ¹®

ÀÓÀç±Ô(ÀüºÏ´ëÇб³)

±â´É¼º º¹ÇÕÀç·áÀÇ Æı«Æ¯¼º ¹× ³»±¸°­µµ ¿¬±¸

µ¿¿ªÇÐ ¹× Á¦¾îºÎ¹®

Á¤¼ºÇö(Çö´ëÁß°ø¾÷)

¼ö¼ú ·Îº¿ ±¹»êÈ­ °æÇè°ú ÇâÈÄ °³¹ß ¹æÇâ

»ý»ê ¹× ¼³°è°øÇкι®

ÀÌÀçÀ±
(µÎ»êÀÎÇÁ¶óÄÚ¾î)

°øÀÛ±â°èÀÇ ÃֽŠµ¿Çâ

¿­°øÇкι®

±èº´¼ø(LGÀüÀÚ)

VRF Á¦Ç° ÀÀ¿ëÀ» ÅëÇÑ ÃÑÇÕ°øÁ¶ ½Ã½ºÅÛÀÇ ¿¡³ÊÁö Àú°¨

À¯Ã¼°øÇкι®

¼ºÇüÁø(KAIST)

°¡»ó°æ°è¹ýÀ» ÀÌ¿ëÇÑ À¯Ã¼-¿¬¼ºÃ¼ »óÈ£ÀÛ¿ë

¿¡³ÊÁö ¹× µ¿·Â°øÇкι®

À̱¤¿­(µÎ»êÁß°ø¾÷)

´ëÇü ¹ßÀü¿ë °¡½ºÅͺó ±â¼úµ¿Çâ°ú ±¹»êÈ­ °³¹ß ÇöȲ

½Å·Ú¼ººÎ¹®

¹ÚÄ¡¿ë(¿¡±âÆò)

¿øÀڷ¹ßÀü ¿¬±¸°³¹ß ¹æÇâ°ú ½Å·Ú¼º ±â¼ú

ÀåÁß¼ø(¾ÆÁÖ´ëÇб³)

»ý»ê¼³ºñ ½Å·Ú¼º Çâ»óÀÇ Á¢±Ù¹æ¹ý

¹ÙÀÌ¿À°øÇкι®

À̵οë(KAIST)

±â°è°úÇÐ, ±â°è°øÇÐ, ±×¸®°í Áß°³¿¬±¸

¸¶ÀÌÅ©·Î/³ª³ë°øÇкι®

±Ç´ë°©(KAIST)

Áúº´ Á¶±â Áø´ÜÀ» À§ÇÑ º¹ÇÕ ±¤ÇÐ À̹Ì¡ ½Ã½ºÅÛ

Ç÷£Æ®ºÎ¹®

ÀÌ°æ¼ö(KSTAR)

KSTAR, ITER ÇÁ·ÎÁ§Æ®¿Í ½ÇÁõÇ÷£Æ® °³¹ß

ITºÎ¹®

±èÀçÇÐ(ÇÏÀÌÁ¨¸ðÅÍ)

ÀÚµ¿È­ ±â°è»ê¾÷ ±¹Á¦°æÀï·Â Çâ»óÀ» À§ÇÑ ITÀ¶º¹ÇÕ

±³À°ºÎ¹®

À¯Á¤¿­(¼­¿ï´ëÇб³)

¿ø·Î±³¼ö¿¡°Ô ±â°è°øÇб³À°À» µè´Â´Ù

°­¿¬ÃÊ·Ï

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬01


±â´É¼º º¹ÇÕÀç·áÀÇ Æı«Æ¯¼º ¹× ³»±¸°­µµ ¿¬±¸

ÀÓÀç±Ô¢Ó(ÀüºÏ´ëÇб³ Â÷¼¼´ëdz·Â¹ßÀü¿¬±¸¼¾ÅÍ), ±è¿¬Á÷(ÀüºÏ´ëÇб³ ±â°è¼³°è°øÇкÎ)

Abstract : ÃÖ±Ù ÀÌ»êȭź¼Ò(CO2) ¹× »ê¾÷ Æó±â¹°°ú °°Àº ¿À¿°¿øÀ» Â÷´ÜÇϱâ À§ÇÏ¿© ȯ°æ ±ÔÁ¦°¡ °­È­ µÇ°í ÀÖ´Ù. ÀÌ·¯ÇÑ ÀÌÀ¯·Î »ê¾÷¿¡¼­´Â ±âÁ¸ Àç·áÀÇ ±â°èÀû ¹°¼ºÀ» ¶Ù¾î³Ñ¾î °æ·®È­ ¹× ÀçÈ°¿ëÀÌ °¡´ÉÇÑ ±â´ÉÀû Ư¼ö¼º±îÁö °®´Â »õ·Î¿î ¼ÒÀçÀÇ Çʿ伺ÀÌ Á¡Â÷ Áõ°¡ÇÏ°í ÀÖ´Ù. ÀÌ¿¡ µû¶ó »õ·Î¿î Àç·á Áï º¹ÇÕÀç·áÀÇ ¿¬±¸µµ ±Þ¼ÓÈ÷ ÁøÇàµÇ¾ú°í ´õ ³ª¾Æ°¡ »ç¿ë ¸ñÀû¿¡ ºÎÇյǴ °í±â´É¼º ¸ÂÃãÇü º¹ÇÕÀç·áÀÇ °³¹ßÀº ÇöÀçÀÇ Àç·á °úÇп¡ À־ °¡Àå Å« ¸ñÇ¥°¡ µÇ°í ÀÖ´Ù. ¿©±â¼­ º¹ÇÕÀç·á¶õ ÃæÀüÁ¦(Filler)¿Í ¸ÅÆ®¸¯½º(Matrix) Àç·á°¡ Á¶ÇÕµÇ¾î ¹°¸®Àû·È­ÇÐÀûÀ¸·Î ¼­·Î ´Ù¸¥ »ó(Phase)À» Çü¼ºÇϸ鼭 º¸´Ù À¯È¿ÇÑ ±â´ÉÀ» ¹ßÈÖÇÏ´Â Àç·á¸¦ ¸»Çϸç, ºÎ½Ä ȯ°æÀ̳ª °æ·®È­°¡ ¿ä±¸µÇ´Â °÷¿¡ ±Ý¼ÓÀ» ´ë½ÅÇÏ´Â ±¸Á¶Àç·á·Î »ç¿ë¹üÀ§¸¦ ³ÐÈ÷°í ÀÖ´Ù. ÀÌ·¯ÇÑ º¹ÇÕ Àç·áÀÇ ÇÑ ¿¹´Â ¸¶±×³×½·À» ¸ÅÆ®¸¯½º·Î ÇÏ´Â Æú¸®¸Ó ÄÚÆà ¸¶±×³×½· º¹ÇÕÀç·á ÀÌ´Ù. Mg alloy´Â Àΰø °üÀý ¹× »À¿Í ±â°èÀû ¹°¼ºÀÌ °¡Àå ºñ½ÁÇÑ »ýü ÀûÇÕ¼º Àç·áÀÌ´Ù. ÇÏÁö¸¸, ¸¹Àº ¾çÀÇ Mg+ ÀÌ ºÎ½ÄµÇ¾î ´Ù·®ÀÇ H+¿Í °°Àº °ÅÇ°ÀÌ ÀÎü ³»¿¡¼­ ¹ß»ý µÈ´Ù. H+ÀÇ ¹ß»ýÀÇ Â÷´Ü°ú Mg ¹°¼ºÀ» À¯ÁöÇϱâ À§ÇÏ¿© ÄÚÆÃÀÌ ÇÊ¿äÇÏ´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ´Â ÇÑ °¡Áö ¹æ¹ýÀº PVAc¿Í °°Àº Æú¸®¸Ó Àç·á¸¦ ÀÌ¿ëÇÏ¿© Dip ÄÚÆÃÇÏ´Â °ÍÀÌ´Ù. ¶ÇÇÑ ±â´É¼º º¹ÇÕÀç·á´Â ÀÌÁ¾ Àç·áµéÀÇ Á¶ÇÕÀ» ÅëÇØ Á¦À۵ǹǷΠ¾ÈÁ¤ÀûÀÎ È°¿ëÀ» À§Çؼ­´Â ´Ù¾çÇÑ È¯°æ¿¡¼­ÀÇ Æı« ¹× °­µµ Ư¼º¿¡ ´ëÇÑ ¸¹Àº µ¥ÀÌÅ͸¦ È®º¸ÇÏ´Â °ÍÀÌ Áß¿äÇÏ´Ù. µû¶ó¼­ º»°í¿¡¼­´Â °í±â´É¼º º¹ÇÕÀç·áÀÇ Çʿ伺°ú ´õºÒ¾î °í±â´É¼º ¸ÂÃãÇü º¹ÇÕÀç·áÀÇ ±â¼úµ¿Çâ ¹× ´Ù¾çÇÑ È¯°æ¿¡¼­ÀÇ Æı« ¹× °­µµ Ư¼º¿¡ °üÇÏ¿© ÁßÁ¡ÀûÀ¸·Î »ìÆ캸µµ·Ï ÇÏ°Ú´Ù.

¿¬»ç ¼Ò°³ ÀÓÀç±Ô ±³¼ö

¡Ü ÇÐ ·Â ÀüºÏ´ëÇб³ ±â°è°øÇÐ('77, ¼®»ç), ÀüºÏ´ëÇб³ ±â°è°øÇÐ('81,¹Ú»ç), ÀϺ» µµÈ£Äí´ëÇÐ ±â°è°øÇÐ('94, ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â Çö´ëÁß°ø¾÷ ±âÀåºÎ ´ë¸®(1974~1977), ¿ï»ê°úÇдëÇÐ ±â°è°ú Á¶±³¼ö(1977~1980), ÀüºÏ´ëÇб³ ÀÚµ¿Â÷½Å±â¼ú¿¬±¸¼Ò ¼ÒÀå(1996~1998), ÀüºÏ´ëÇб³ ±â°èÇ×°ø½Ã½ºÅÛ°øÇкΠÇкÎÀå(1999~2001), ÀüºÏ´ëÇб³ ±â°èÀÚµ¿Â÷ ´©¸®»ç¾÷´Ü ´ÜÀå(2004~2006), ÀüºÏ´ëÇб³ ±â°èÇ×°ø½Ã½ºÅÛ°øÇкÎ(1980~ÇöÀç)

¡Ü ¼ö»ó°æ·Â ÀüºÏ´ëÇб³ °ø´ë ¿ì¼ö±³¼ö»ó ¼ö»ó, ¼¼°èÀθí´ë»çÀüµîÀç, ÀüºÏ´ëÇб³ Çмú»ó ¼ö»ó, Salute to Greatness Award,  Universal Award of Accomplishment, TOP 100 ENGINEERS 2008 µîÀç

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬02


¼ö¼ú ·Îº¿ ±¹»êÈ­ °æÇè°ú ÇâÈÄ °³¹ß ¹æÇâ

Á¤¼ºÇö¢Ó(Çö´ëÁß°ø¾÷)

Abstract : ¼¼°è ÁÖ¿ä±¹ÀÇ °í·ÉÈ­¿¡ µû¶ó °í±Þ ÀÇ·á¼­ºñ½º¿Í Ä¡·áÈ¿°ú°¡ ³ôÀº ÷´Ü ÀÇ·á±â±â¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÏ°í ÀÖ´Ù. ÀÌ¿¡ µû¶ó ÀÇ·á±â±â »ê¾÷ÀÌ ³ôÀº ¼öÁØÀÇ ¼ºÀåÀ» ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¾î ¸¹Àº ±â¾÷¿¡¼­ Àû±ØÀûÀ¸·Î »ç¾÷ ÁøÃâÀ» ÃßÁøÇÏ°í ÀÖ´Ù. ¶ÇÇÑ Á¤ºÎ¿¡¼­µµ ÀÇ·á±â±â »ê¾÷À» Â÷¼¼´ë ÁÖ¿ä »ê¾÷À¸·Î À°¼ºÇϱâ À§ÇÑ ³ë·ÂÀ» ±â¿ïÀ̱⠽ÃÀÛÇÏ¿´°í, Çа迡¼­µµ °ü·ÃºÐ¾ßÀÇ ¿øõ±â¼ú°ú ÀÀ¿ë±â¼ú °³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù. º» ¹ßÇ¥¿¡¼­´Â ÀÇ·á±â±â »ê¾÷ ÁøÀÔ ³ë·Â¿¡ °üÇÑ »ç·ÊÀÇ Çϳª·Î¼­ Çö´ëÁß°ø¾÷ÀÇ ÀÇ·á·Îº¿ ±â¼ú°³¹ß ÇöȲÀ» ¼Ò°³ÇÏ°í, ±â¼ú°³¹ß ¹× »ç¾÷ÃßÁø¿¡ À־ÀÇ ½Ã»çÁ¡À» Á¤¸®ÇØ º»´Ù. ¶ÇÇÑ ÀÇ·á·Îº¿ÀÇ Æ¯¼º»ó ÇʼöÀûÀ¸·Î ¿ä±¸µÇ´Â ÀÇ·áÁø°úÀÇ Çù·Â¿¬±¸ »ç·Ê¸¦ ¼Ò°³ÇÑ´Ù.

¿¬»ç ¼Ò°³ Á¤¼ºÇö »ó¹«

¡Ü ÇÐ ·Â Áß¾Ó´ëÇб³ ±â°è°øÇаú('85, ¼®»ç)

¡Ü ÁÖ¿ä°æ·Â Çö´ëÁß°ø¾÷ ¼ö¼Æ¿¬±¸¿ø(1990~2010), Çö´ëÁß°ø¾÷ »ó¹«(2011~ÇöÀç)

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬03


°øÀÛ±â°èÀÇ ÃֽŠµ¿Çâ

ÀÌÀçÀ±¢Ó(µÎ»êÀÎÇÁ¶óÄÚ¾î)

Abstract : ÅÍ´×¼¾ÅÍ¿Í ¸Ó½Ã´×¼¾ÅÍ·Î ´ëÇ¥µÇ´Â CNC °øÀÛ±â°è´Â ±â°è¸¦ ¸¸µå´Â ±â°è¶ó´Â »ó¡¼ºÀ» ¶Ù¾î ³Ñ¾î ÀÚµ¿Â÷, ÀüÀÚ, ¹ÝµµÃ¼, ¿ìÁÖÇ×°ø, ÀÇ·á, ¿¡³ÊÁö µî 21¼¼±â Àü »ê¾÷ºÐ¾ßÀÇ °íµµ¼ºÀåÀ» °ßÀÎÇÏ°í ÀÖ´Ù. ±Û·Î¹úÈ­µÈ ½ÃÀåȯ°æ¿¡¼­ °í°´¿ä±¸¿¡ ´ëÇÑ ºü¸¥ ´ëÀÀ »Ó¸¸ ¾Æ´Ï¶ó, ±â¼ú Çõ½Å¿¡ ÀÇÇÑ ½Å¼ö¿ä âÃâÀ» À§ÇØ »õ·Î¿î SolutionÀ» ²÷ÀÓ¾øÀÌ °³¹ßÇÑ °á°úÀÌ´Ù. ´Ù¾çÇÑ SolutionÀ» Á¦°øÇϱâ À§ÇÏ¿© ÀüÀÚ»ê¾÷¿¡ ÇÊ¿äÇÑ ¹Ì¼¼°¡°ø±â ºÎÅÍ ¿¡³ÊÁö »ê¾÷¿¡ ÇÊ¿äÇÑ ´ëÇü±â±îÁö Á¦Ç°¿µ¿ªÀ» ³ÐÇô³ª°¡°í ÀÖ´Ù. ¸¶ÀÌÅ©·Î¹ÌÅÍ ´ÜÀ§ÀÇ ¹Ì¼¼ ÆÐÅÏ°¡°øµµ ÃÊÁ¤¹ÐÁ¦¾î°¡ °¡´ÉÇÑ ±ÝÇü°¡°ø¿ë ¸Ó½Ã´×¼¾ÅÍ¿¡¼­ ±¸ÇöµÇ°í ÀÖÀ¸¸ç, ³ª³ë¹ÌÅÍ ¼öÁرîÁö CNC Á¦¾îµÇ°í ÀÖ´Ù. ´Ù¾ç¼º°ú ÇÔ²² ±â¼úÀÇ À¶ÇÕ°ú ÆíÀǼº Á¦°í¸¦ ÅëÇÑ º¹ÇÕ ´Ù±â´ÉÈ­, Áö´ÉÈ­ µî All-in-One ÅëÇÕ Á¦Ç° °³¹ßÀ» ÅëÇÑ ±â¼úÇõ½ÅÀ» ¶ÇÇÑ ²ÒÇÏ°í ÀÖ´Ù. º¹ÀâÇÑ Çü»óÀÇ °øÀÛ¹°À» ´Ù¾çÇÑ ÀÚ¼¼·Î À§Ä¡½ÃÄÑ °¡°øÇÒ ¼ö ÀÖ´Â ¿ÀÃà °¡°ø±â, ±â°è ÇÑ´ë·Î ¿ÏÁ¦Ç° °¡°øÀÌ °¡´ÉÇÑ ¼±»è/¹Ð¸µ º¹ÇÕ °¡°ø±â°¡ ´ëÇ¥ÀûÀÎ °³¹ß »ç·ÊÀÌ´Ù. ´Ù¾çÇÑ Á¾·ùÀÇ °øÀÛ¹°À» ´Ù¼öÀÇ ±â°è¿¡¼­ ¹«ÀÎ °¡°øÇÒ ¼ö ÀÖ´Â FMS ¿ª½Ã ÅëÇÕÈ­µÈ ±â¼ú °³¹ß »ç·ÊÀÌ´Ù. ¸¶Áö¸·À¸·Î °øÀÛ±â°è ±âÃʱâ¼úÀ̶ó°í ÇÒ ¼ö ÀÖ´Â ¿î¿µ È¿À² Çâ»óÀ» À§ÇÑ Á¤¹ÐÈ­, °í¼ÓÈ­ ±â¼ú °³¹ß ºÎ¹®ÀÌ ÀÖÀ¸¸ç, À̸¦ ÅëÇØ Ç°Áú°ú »ý»ê¼ºÀ» Áö¼ÓÀûÀ¸·Î Çâ»ó½ÃÅ°°í ÀÖ´Ù. ºÐ´ç 50,000 ȸÀüÀÌ °¡´ÉÇÑ ÃÊ°í¼Ó ÁÖÃà, Áß·Â °¡¼Óµµ¸¦ ÃÊ¿ùÇÏ´Â °í°¡°¨¼Ó À̼۰è, ºü¸¥ Áøµ¿ °¨¼è´ÉÀ» °¡Áø ±¸Á¶¹°Àº °í¼ÓÈ­¿Í °ü·ÃµÈ ÃÖ°í¼öÁØÀÇ °³¹ß »ç·ÊÀÌ´Ù. ¶ÇÇÑ, °í¼ÓÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó °íÇ°Áú ´Þ¼ºÀ» À§ÇÑ ¿­º¯Çü Á¦¾î°¡ Áß¿äÇÏ°Ô ´ëµÎµÇ°í ÀÖÀ¸¸ç ÁÖÃà, À̼۰èÀÇ ¿­º¯À§ Á¦¾î »Ó ¸¸ ¾Æ´Ï¶ó, ´ë±â¿Âµµ¿¡ ÀÇÇÑ ±¸Á¶¹° ¿­º¯À§ Á¦¾îµµ ±× Àû¿ë¹üÀ§¸¦ ³ÐÇô°¡°í ÀÖ´Ù.

¿¬»ç ¼Ò°³ ÀÌÀçÀ± Àü¹«

¡Ü ÇÐ ·Â ¼­¿ï´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°èÇаú('77, Çлç), Çѱ¹°úÇбâ¼ú¿ø ±â°è°øÇаú('79, ¼®»ç)

¡Ü ÁÖ¿ä°æ·Â ´ë¿ìÁß°ø¾÷(ÁÖ) ¿¬±¸°³¹ß´ã´ç ÃÑ°ý ÀÌ»ç(1981~2005), µÎ»êÀÎÇÁ¶óÄÚ¾î(ÁÖ) °ø±âBG ºÎBGÀå ¹× ÇØ¿Ü¿µ¾÷´ã´ç Àü¹«(2005~2006), µÎ»êÀÎÇÁ¶óÄÚ¾î(ÁÖ) ±âȹÁ¶Á¤½Ç ½ÇÀå(2006~2007), µÎ»êÀÎÇÁ¶óÄÚ¾î(ÁÖ) ÇØ¿Ü¿µ¾÷´ã´ç ÃÑ°ý Àü¹«(2008), µÎ»êÀÎÇÁ¶óÄÚ¾î(ÁÖ) ¹ÌÁÖ¹ýÀÎ ¹ýÀÎÀå(2009~2011), µÎ»êÀÎÇÁ¶óÄÚ¾î(ÁÖ) ¿¬±¸°³¹ßÃÑ°ý(2012~ÇöÀç)

¡Ü ¼ö»ó°æ·Â [¼öÆòÇü ¸Ó½Ã´×¼¾ÅÍ] IR52 À念½Ç»ó ¼ö»ó, [ÃÊÁ¤¹Ð ºñ±¸¸é °¡°ø±â °³¹ß] ´ëÇѱâ°èÇÐȸ ±â¼ú»ó, [¼öÄ¡Á¦¾î¼±¹Ý] ¼¼°è ÀÏ·ù»óÇ° ÀÎÁõ, [ÃÊ°í¼Ó ¸Ó½Ã´×¼¾ÅÍ] ´ëÇѹα¹ 10´ë ½Å±â¼ú ÀÎÁõ, [ÃÊ°í¼Ó ¸Ó½Ã´×¼¾ÅÍ] ¼¼°èÀÏ·ù»óÇ° ÀÎÁõ, [°í¼Ó °í°­¼º ´ÙÃà NC ¼±¹Ý Á¦Á¶±â¼ú] Çѱ¹ÀÇ 100´ë ±â¼ú ¼ö»ó

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬04


VRF Á¦Ç° ÀÀ¿ëÀ» ÅëÇÑ ÃÑÇÕ°øÁ¶ ½Ã½ºÅÛÀÇ ¿¡³ÊÁö Àú°¨

±èº´¼ø¢Ó(LGÀüÀÚ)

Abstract : ¿¡³ÊÁö Àý¾àÀÌ ¹ü»çȸÀû À̽´·Î ¶°¿À¸£¸é¼­ °íÈ¿À² Á¦Ç°¿¡ ´ëÇÑ ¿ä±¸¿Í °Ç¹°¿¡¼­ ¼ÒºñÇÏ´Â ¿¡³ÊÁö¸¦ Àý°¨ÇÏ´Â ÃÖÀû ¼³°è¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù. À̸¦ À§Çؼ­´Â °ÇÃ๰ÀÇ Æ¯¼º¿¡ ÀûÇÕÇÑ Á¦Ç°±º ¼±Á¤¿¡¼­ºÎÅÍ, Á¤È®ÇÑ ºÎÇÏ ¿¹Ãø°ú À̸¦ ¹ÙÅÁÀ¸·Î ÇÑ ¼³ºñ ¼³°è ¹× ¿¡³ÊÁö ¼º´É Æò°¡/°ËÁõÀ» °ÅÃÄ, ¼³Ä¡ ÈÄ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ±îÁö Life Cycle¿¡ °ÉÄ£ Total Solution Á¦°øÀÌ ÇÊ¿äÇÏ´Ù.
Áß¼ÒÇü »ó¾÷¿ë ºôµù ½ÃÀåÀ» Áß½ÉÀ¸·Î ±Þ¼ÓÈ÷ ¼ºÀåÇÏ°í ÀÖ´Â VRF ½Ã½ºÅÛÀº ÇÑ ´ëÀÇ ½Ç¿Ü±â¿¡ ¿©·¯ ´ëÀÇ ½Ç³»±â¸¦ ¿¬°áÇØ ´Ù¾çÇÑ ÇüÅÂ¿Í ¿ë·®ÀÇ °øÁ¶°¡ °¡´ÂÇÑ ½Ã½ºÅÛÀ¸·Î ³·Àº Ãʱâ ÅõÀÚºñ¿Í ¿îÀü ºñ¿ë, ±×¸®°í ½Ã½ºÅÛ ¸ðµåÀüȯ¿¡ µû¶ó ³Ã³­¹æÀÌ °¡´ÉÇÑ °íÈ¿À² ½Ã½ºÅÛÀÌ´Ù. ½Ç³»±âÀÇ °³º° Á¦¾î »Ó ¾Æ´Ï¶ó Áß¾Ó Á¦¾î ½Ã½ºÅÛ°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ÃÖ´ë ¼ö¿ä Àü·Â Á¦¾î, BMS¿¬µ¿ Á¦¾î¸¦ ÅëÇØ ¿¡³ÊÁö Àý°¨À» ½ÇÇöÇßÀ¸¸ç, °ø·©½Ä/¼ö³Ã½Ä, ³Ã³­¹æ ÀýȯÇü/µ¿½ÃÇü Á¦Ç°±îÁö ¼³Ä¡ ÇöÀå ¿©°Ç¿¡ ÀûÇÕÇÑ Á¦Ç°À» Á¦¾ÈÇÑ´Ù.
¶ÇÇÑ, °íÈ¿À² Æó¿­È¸¼ö ±â¼úÀ» Àû¿ëÇÏ¿© ÆíÀÇÁ¡ ¿¡³ÊÁö »ç¿ë·®À» ȹ±âÀûÀ¸·Î °¨ÃàÇÑ ³ÃÀå/°øÁ¶ º¹ÇÕ ÀÏ¿øÈ­ ½Ã½ºÅÛ, º¸ÀÏ·¯ ´ëü¸¦ À§ÇÑ °ø·©½Ä È÷Æ®ÆßÇÁ ±ÞÅÁ±â, ½Ç³» °ø±âÁú À¯Áö¿Í ¿¡³ÊÁö Àý°¨À» µ¿½Ã¿¡ ´Þ¼ºÇϱâ À§ÇÑ Àü¿­¿­±³È¯ ȯ±â ½Ã½ºÅÛ, °íÈ¿À² VRF ±â¼ú°ú AHU¸¦ Á¢¸ñÇÏ¿© ³Ã³­¹æ ¹× ȯ±â, °¡½ÀÀ» µ¿½Ã¿¡ ´Þ¼ºÇÑ VRF¿ë AHU µî ´Ù¾çÇÑ ApplicationÀ» Á¦¾ÈÇÑ´Ù.
ÀÌ·¯ÇÑ ´Ù¾çÇÑ °íÈ¿À² ±â±â¿¡ ½º¸¶Æ® Network ±â¼ú Á¢¸ñÀ» ÅëÇØ ½Ã½ºÅÛ ¼º´ÉÀ» ±Ø´ëÈ­ ÇÏ°í, ¿¡³ÊÁö Àý°¨À» À§ÇÑ Àû±ØÀûÀÎ ¼Ö·ç¼Ç Á¦¾È°ú Áö¼ÓÀûÀÎ À¯Áö, °ü¸®¸¦ ÅëÇÑ Á¦Ç° ¼ö¸í ¿¬Àå±îÁö ´Þ¼ºÇÏ¿´´Ù.
ÇâÈÄ ½ÅÀç»ý ¿¡³ÊÁö À¶ÇÕÀ» ÅëÇØ Áö¼ÓÀûÀÎ °øÁ¶ »ê¾÷ ¹ßÀü¿¡ À̹ÙÁöÇÒ °ÍÀ» ±â´ëÇÑ´Ù.

¿¬»ç ¼Ò°³ ±èº´¼ø »ó¹«

¡Ü ÇÐ ·Â ºÎ»ê´ëÇб³ ±â°è°øÇÐ (¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â ±¹Á¦ ³Ãµ¿±â±¸ Çѱ¹À§¿øȸ ºÎȸÀå, Çѱ¹ ³Ãµ¿ °øÁ¶ Çùȸ À§¿ø

¡Ü ¼ö»ó°æ·Â ÀÌ´ÞÀÇ ¿£Áö´Ï¾î»ó ¼ö»ó, ¿¡³ÊÁöÀ§³Ê»ó ´ë»ó(Áö°æºÎ Àå°ü»ó)¼ö»ó, ´ëÇѹα¹ ±â¼ú ´ë»ó(Àº»ó) ¹× 10´ë ½Å±â¼ú ¼ö»ó, ¿¡³ÊÁöÀ§³Ê»ó ´ë»ó(ȯ°æºÎ Àå°ü»ó) ¼ö»ó, AHR Expo Innovation Award Winner In Heating(V2 Injection AWHP) ¼ö»ó

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬05


°¡»ó°æ°è¹ýÀ» ÀÌ¿ëÇÑ À¯Ã¼-¿¬¼ºÃ¼ »óÈ£ÀÛ¿ë

¼ºÇüÁø¢Ó(KAIST)

Abstract : À¯Ã¼¿Í ¿¬¼ºÃ¼ÀÇ »óÈ£ÀÛ¿ëÀº »ý¹°ÇÐÀûÀÎ ½Ã½ºÅÛ¿¡¼­ ÀϹÝÀûÀ¸·Î ÀϾ´Â Çö»óÀÌ´Ù. Ç÷°üÀ¯µ¿À̳ª Çì¾öÄ¡°í ÀÖ´Â ¹°°í±â¸¦ °í·ÁÇÒ ¶§ ±¸Á¶Ã¼´Â ¿¬¼ºÃ¼ÀÌ°í ÀÌ´Â À¯Ã¼¿¡ µÑ·¯½Î¿© ÀÖ´Ù. ¿¬¼ºÃ¼ÀÇ ¿òÁ÷ÀÓ¿¡ ÀÇÇØ ÁÖÀ§ÀÇ À¯µ¿ÀÌ º¯ÇÏ°Ô µÇ°í º¯È­µÈ À¯µ¿Àº ´Ù½Ã ¿¬¼ºÃ¼¿¡ ¿µÇâÀ» ÁÖ°Ô µÈ´Ù. À¯Ã¼¿Í ¿¬¼ºÃ¼´Â ¼­·Î ²÷ÀÓ¾øÀÌ ¿µÇâÀ» Áֱ⠶§¹®¿¡ À¯µ¿°ú ¿¬¼ºÃ¼ÀÇ ¿òÁ÷ÀÓÀº µ¿½Ã¿¡ °í·ÁµÇ¾î¾ß ÇÑ´Ù. °¡»ó°æ°è¹ýÀº À¯Ã¼¿Í ¿¬¼ºÃ¼ÀÇ »óÈ£ÀÛ¿ëÀ» Çؼ®Çϱâ À§ÇØ ³Î¸® »ç¿ëµÇ´Â ¹æ¹ý ÁßÀÇ Çϳª·Î¼­ À¯µ¿¿¡ ´ëÇÏ¿© °ÝÀÚ¸¦ Àç»ý¼ºÇÏÁö ¾Ê°í °íüÀÇ ´ëº¯ÇüÀ» ¸ð»çÇϱâ À§ÇÏ¿© Æí¸®ÇÏ´Ù´Â ÀåÁ¡À» °®´Â´Ù. ÀÌÀüÀÇ ¿¬±¸´Â Áú·®À» °®°í ÀÖÁö ¾ÊÀº °£´ÜÇÑ Çü»ó¿¡ ´ëÇØ ¿¬±¸°¡ ÁÖ·Î ÀÌ·ç¾îÁ® ¿Ô´Ù. Áú·®À» °®´Â ¹°Ã¼ÀÇ °æ¿ì ¹Ðµµ°¡ Àüü °è»ê ¿µ¿ª¿¡ ´ëÇÏ¿© ÀÏÁ¤ÇÏÁö ¾Ê±â ¶§¹®¿¡ ÀÌÀüÀÇ ¿¬±¸¿¡ ºñÇØ ÈξÀ º¹ÀâÇÑ ¹®Á¦¸¦ ¾ß±â ½ÃŲ´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ±Øº¹Çϱâ À§ÇÏ¿© À¯Ã¼¿Í Áú·® ¹× µÎ²²¸¦ °¡Áø ¿¬¼ºÃ¼ÀÇ »óÈ£ÀÛ¿ëÀ» Çؼ®ÇÒ ¼ö ÀÖ´Â °¡»ó°æ°è¹ýÀ» °³¹ßÇÏ¿´´Ù. À̸¦ ÀÌ¿ëÇÏ¿© ÆÞ·°ÀÌ´Â ±ê¹ß, Çì¾öÄ¡´Â ÇØÆĸ®, º§ºê¾øÀÌ ±¸µ¿µÇ´Â ÆßÇÁ, Àü´Ü À¯µ¿¿¡¼­ ±¸Çü ¹× ºñ±¸Çü ¿¬¼ºÃ¼ÀÇ °Åµ¿ ±×¸®°í ä³Î À¯µ¿¿¡¼­ ±¸Çü ¿¬¼ºÃ¼ÀÇ È¾ ¹æÇâ À̵¿ µîÀÇ ´Ù¾çÇÑ ¹®Á¦µéÀÌ Çؼ®µÇ¾ú´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ Çö»óµé¿¡ ´ëÇÏ¿© À¯µ¿º¯È­ ¹× ¿¬¼ºÃ¼ÀÇ ¿¬¼ºÆ¯¼ºº¯È­°¡ À¯Ã¼¿Í ¿¬¼ºÃ¼ÀÇ »óÈ£ÀÛ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÏ¿© ¿¬±¸°¡ ¼öÇàµÇ¾ú´Ù. À¯Ã¼¿Í ¿¬¼ºÃ¼ÀÇ »óÈ£ÀÛ¿ë »Ó ¸¸ ¾Æ´Ï¶ó ±¤·Â°ú ¿¬¼ºÃ¼ÀÇ »óÈ£ÀÛ¿ë±îÁö °í·ÁµÇ´Â º¹ÀâÇÑ À¯µ¿Çö»óµé¿¡ ´ëÇÑ ¿¬±¸°¡ ÀÌ·ç¾îÁ³´Ù.

¿¬»ç ¼Ò°³ ¼ºÇüÁø ±³¼ö

¡Ü ÇÐ ·Â ¼­¿ï´ë ±â°è°øÇаú('78, Çлç), KAIST('80, ¼®»ç), KAIST('84, ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â µ¶ÀÏ Karlsruhe ´ëÇб³ ¹æ¹®±³¼ö(1990), ¹Ì±¹ UCLA ¹æ¹®±³¼ö(1996-1997), ¹Ì±¹ UIUC ¹æ¹®±³¼ö(1986-1988), KAIST ±³¼ö(1994-ÇöÀç)

¡Ü ¼ö»ó°æ·Â KIAST ±â¼úÇõ½Å¿ì¼ö»ó ¼ö»ó, KAIST Çмú ´ë»ó ¼ö»ó, KAIST ±¹Á¦Çù·Â»ó ¼ö»ó, KAIST Çмú»ó ¼ö»ó, ´ëÇѱâ°èÇÐȸ Çмú»ó ¼ö»ó, ºÎÇ°¼ÒÀç±â¼ú»ó ¼ö»ó, ´ëÇѱâ°èÇÐȸ ³²ÇåÇмú»ó ¼ö»ó

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬06


´ëÇü ¹ßÀü¿ë °¡½ºÅͺó ±â¼úµ¿Çâ°ú ±¹»êÈ­ °³¹ß ÇöȲ

À̱¤¿­¢Ó(µÎ»êÁß°ø¾÷(ÁÖ))

Abstract : ¸ñ Â÷
1. ´ëÇü ¹ßÀü¿ë °¡½ºÅͺó ±â¼úµ¿Çâ°ú ±¹»êÈ­ °³¹ß ÇöȲ
1.1 ÃÖ±Ù °¡½ºÅͺó ±â¼ú °³¹ß µ¿Çâ
1.2 ÁÖ¿ä Á¦Àۻ纰 ±â¼ú °³¹ß ÇöȲ

2. ´ëÇü °¡½ºÅÍºó ±¹»êÈ­ °³¹ß ÇöȲ
2.1 185MW & 272MW±Þ °¡½ºÅͺ󱹻êÈ­
2.2 ÁÖ¿ä ±âÀÚÀ纰 ±¹»êÈ­ ÇöȲ

¿¬»ç ¼Ò°³ À̱¤¿­ »ó¹«

¡Ü ÇÐ ·Â ¿µ³²´ë Á¤¹Ð±â°è°øÇаú('91)

¡Ü ÁÖ¿ä°æ·Â Çѱ¹Áß°ø¾÷ °¡½ºÅͺ󼳰èÆÀ('91), 40mw±Þ ¹ßÀü¿ë °¡½ºÅÍºó ±¹»êÈ­ °³¹ß('97), µÎ»êÁß°ø¾÷ °¡½ºÅͺ󼳰èÆÀÀå('06), 5MW±Þ ¼ÒÇü °¡½ºÅÍºó °³¹ß('07), ¹ßÀü¿ë 270MW±Þ ´ëÇü°¡½ºÅÍºó ±¹»êÈ­ °³¹ß('11)

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬07


¿øÀڷ¹ßÀü ¿¬±¸°³¹ß ¹æÇâ°ú ½Å·Ú¼º ±â¼ú

¹ÚÄ¡¿ë¢Ó(Çѱ¹¿¡³ÊÁö±â¼úÆò°¡¿ø)

Abstract : ¿ì¸®³ª¶ó ¿øÀڷ»ê¾÷¿¡¼­ ¿øÀڷ¹ßÀü(ÀÌÇÏ ¿øÀü)Àº ÁßÃßÀûÀÎ ¿ªÇÒÀ» ÇÏ°í ÀÖÀ¸¸ç, ±¹³» ¿øÀü»ê¾÷Àº UAE ¼öÃâÀ» °è±â·Î ±¹¹ÎµéÀÇ °ü½ÉÀ» ¹Þ°í ÀÖ´Ù. ÀϺ» ÈÄÄí½Ã¸¶ ¿øÀü»ç°í ÀÌÈÄ ¼¼°è °¢±¹Àº °¢ ±¹°¡º°·Î óÇÑ »óȲ¿¡ µû¶ó ¿øÀü Á¤Ã¥À» ´Ù¾çÇÏ°Ô °¡Áö°í °¡°í ÀÖÀ¸³ª, ¿ì¸®³ª¶ó¿¡¼­´Â ±âÈĺ¯È­¿¡ ´ëÇÑ È¿À²Àû ´ëÀÀ, ¾ÈÁ¤ÀûÀ̸ç Àú·ÅÇÑ Àü·Â°ø±Þ, ½ÅÀç»ý¿¡³ÊÁö Àü·ÂÀÇ ¾ÈÁ¤Àû, °æÁ¦Àû »ó¿ëÈ­½Ã±îÁö °¡±³¿¡³ÊÁö ¿ªÇÒ ¼öÇàÀ» À§ÇÑ ´ë¾ÈÀ¸·Î¼­ ¿øÀü»ê¾÷ÀÌ ÀÚ¸®Àâ°í ÀÖ´Ù.
°­¿¬¿¡¼­´Â ¿øÀüÀÇ ¾ÈÀü¼º Çâ»óÀ» À§ÇÑ ±¹°¡±â¼ú°³¹ß ¹æÇâÀ» °£·«È÷ ¾ð±ÞÇÏ°í, ±â°è°ø¾÷ÀÌ ´ã´çÇØ¾ß ÇÒ ºÐ¾ß, ƯÈ÷ ½Å·Ú¼º ±â¼úÀÇ ¿ªÇÒ¿¡ ´ëÇØ Á¤¸®ÇÏ¿´´Ù. À̸¦ ÅëÇØ ½Å·Ú¼ººÎ¹® »êÇп¬ °ü°èÀÚµéÀÌ ¿øÀü»ê¾÷¿¡¼­ÀÇ ±â¿© ¹æÇ⼺À» Á¤¸³ÇÒ ¼ö ÀÖ´Â ±âȸ°¡ µÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
°á·ÐÀûÀ¸·Î Á¶¼±, ¹ÝµµÃ¼, ÀÚµ¿Â÷ ÀÌÈÄÀÇ Â÷¼¼´ë ¼öÃâ ¼ºÀ嵿·ÂÀ¸·Î¼­ÀÇ ¿øÀü±â¼ú°³¹ß¿¡ ±â°è°øÇÐ Àü¹®°¡µéÀÇ Àû±ØÀû Âü¿©´Â ¿øÀü ¾ÈÀü¼ºÀÇ »Ñ¸®¸¦ Æ°Æ°È÷ ÇÏ´Â ±â¹ÝÀ» Á¦°øÇϴµ¥ Å©°Ô ±â¿©Çϸ®¶ó ±â´ëµÈ´Ù.

¿¬»ç ¼Ò°³ ¹ÚÄ¡¿ë ¿øÀÚ·ÂPD

¡Ü ÇÐ ·Â ºÎ»ê´ë('88, Çлç), KAIST('90, ¼®»ç), KAIST('96, ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â Çѱ¹Àü·Â Àü·Â¿¬±¸¿ø(¡®96-¡¯11), ÇѼö¿ø Áß¾Ó¿¬±¸¿ø(¡®11-ÇöÀç), Áö½Ä°æÁ¦ R&D ¿øÀÚ·Â PD (2011.5-ÇöÀç)

¡Ü ¼ö»ó°æ·Â Çѱ¹Àü·Â »çÀå»ó, ¿øÀڷ¾ÈÀüÀÇ ³¯ °úÇбâ¼úºÎÃѸ®°âÀå°ü»ó, ´ëÇѱâ°èÇÐȸ À¯´ãÇмú»ó ¼ö»ó, Çѱ¹¾Ð·Â±â±â°øÇÐȸ Çмú»ó µî

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬08


»ý»ê¼³ºñ ½Å·Ú¼º Çâ»óÀÇ Á¢±Ù¹æ¹ý

ÀåÁß¼ø¢Ó(¾ÆÁÖ´ëÇб³ »ê¾÷°øÇаú), ÃÖº´ÀÍ(KIMM)

Abstract : »ý»ê¼³ºñÀÇ ½Å·Ú¼ºÀº Á¦Á¶ »ý»ê¼º¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ÁÖ´Â Áß¿äÇÑ ¿ä¼ÒÀÌ´Ù. »ý»ê¼³ºñÀÇ ½Å·Ú¼ºÀ» Á¦°íÇϱâ À§ÇÏ¿© °ú°Å¿¡´Â ÁÖ·Î ¿î¿ëÀû Ãø¸é¿¡¼­ ¿¹¹æÁ¤ºñ³ª °ü¸® µîÀÇ Á¢±ÙÀÌ ÀÌ·ç¾îÁ® ¿Ô´Ù. º» ¹ßÇ¥¿¡¼­´Â »ý»êÀåºñ¸¦ °³¹ßÇÏ°í ¼³°èÇÏ´Â °úÁ¤¿¡¼­ ¾î¶°ÇÑ È°µ¿µéÀÌ ÀÌ·ç¾îÁ®¾ß ½Å·Ú¼ºÀ» Á¦°íÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´ëÇÏ¿© ¾Ë¾Æº¸°íÀÚ ÇÑ´Ù. À̸¦ À§ÇÏ¿© ÀåºñÀÇ ½Å·Ú¼º ±Ô°ÝÀ̳ª Æò°¡±Ô°Ý¿¡ ´ëÇÏ¿© ¾Ë¾Æº¸°í, ¼±Áø±â¾÷ÀÇ Á¢±Ù¹æ¹ý, ¼³ºñÀÇ ½Å·Ú¼ºÀ» Çâ»ó½ÃÅ°±â À§ÇÑ ±â¼úÀÇ ÃÖ±Ù µ¿Ç⠵ ´ëÇÏ¿© ³íÀÇÇÏ°íÀÚ ÇÑ´Ù.

¿¬»ç ¼Ò°³ ÀåÁß¼ø ±³¼ö

¡Ü ÇÐ ·Â ¼­¿ï´ëÇб³ »ê¾÷°øÇаú('79, °øÇлç), KAIST »ê¾÷°øÇаú ('81, °øÇм®»ç), KAIST »ê¾÷°øÇаú('86, °øÇйڻç)

¡Ü ÁÖ¿ä°æ·Â ¾ÆÁÖ´ëÇб³ ±³¼ö(1984~ÇöÀç), ¾ÆÁÖ´ëÇб³ °ø°ú´ëÇÐÀå(2007~2011), ½Å·Ú¼ºÀü¹®À§¿øȸ À§¿øÀå(2007~2009)

¡Ü ¼ö»ó°æ·Â ´ëÅë·É»ó : ½Å·Ú¼ººÎ¹® °øÇå

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬09


±â°è°úÇÐ, ±â°è°øÇÐ, ±×¸®°í Áß°³¿¬±¸

À̵οë¢Ó(KAIST)

Abstract : ±â°è°øÇÐÀº ³ª³¯ÀÌ ¹ßÀüÇÏ°í ¿µ¿ªÀÌ È®´ëµÇ¾î ÃÖ±Ù¿¡´Â ¾à¹°, ÀÇ·á±â±â, ÀÇ·á±â¼ú, ¹ÙÀÌ¿À¸¶Ä¿ µî Áúº´ÀÇ ¿¹¹æ, Áø´Ü, Á¶±â¹ß°ß, ¿¹ÈÄÆÇÁ¤, ±×¸®°í Ä¡·á¿¡ Àû¿ëµÇ´Â ÀÇ·áÀû »êÃâ¹°¿¡µµ ±× ±â¿©°¡ ´«ºÎ½Ã°Ô Áõ´ëµÇ°í ÀÖ´Ù. º» °­¿¬¿¡¼­´Â ÀÌ·¯ÇÑ ±â¿©¸¦ º¸´Ù È¿À²ÀûÀÌ°í È¿°úÀûÀ¸·Î ¸¸µé¾î³»±â À§ÇÑ Àü·«À¸·Î¼­ÀÇ Áß°³¿¬±¸ÀÇ Á߿伺À» ³íÇÑ´Ù.

¿¬»ç ¼Ò°³ ÀÌµÎ¿ë ±³¼ö

¡Ü ÇÐ ·Â ¼­¿ï´ëÇб³('85, °øÇлç), Rensselaer Polytechnic Institute(1987, M.S.), Rensselaer Polytechnic Institute(1993, Ph.D.)

¡Ü ÁÖ¿ä°æ·Â Rensselaer Polytechnic Institute ¿¬±¸¿ø(1993~1994), Çѱ¹°úÇбâ¼ú¿ø(KAIST) ±â°è°øÇÐÀü°ø Á¶±³¼ö, ºÎ±³¼ö, Á¤±³¼ö(1994~ÇöÀç), º¸°Çº¹ÁöºÎ Çѱ¹º¸°Ç»ê¾÷ÁøÈï¿ø ±â¹Ý±¸Ãà´ÜÀå(2010~2012)

¡Ü ¼ö»ó°æ·Â Rensselaer Polytechnic Institute Charles M. Close Doctoral Prize, ´ëÇѱâ°èÇÐȸ ¹é¾Ï³í¹®»ó ¼ö»ó, Institute of Electrical and Electronics Engineers(IEEE) Franklin V. Taylor Memorial Award

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬10


Áúº´ Á¶±â Áø´ÜÀ» À§ÇÑ º¹ÇÕ ±¤ÇÐ À̹Ì¡ ½Ã½ºÅÛ

±Ç´ë°©¢Ó, Á¤ÇüÁØ, µµ´öÈ£(KAIST)

Abstract : ¾Ï, µ¿¸Æ°æÈ­¿Í °°Àº Áúº´ÀÇ Á¶±â Áø´ÜÀ» À§Çؼ­´Â ¹ß»ý Ãʱâ´Ü°è¿¡¼­ÀÇ °ËÃâÀÌ ÇÊ¿äÇÏ´Ù. ÇöÀç Áúº´ Áø´ÜÀ» À§ÇÑ ÀÇ·á±â±â·Î´Â CT, PET, MRI µîÀÌ È°¹ßÇÏ°Ô ÀÌ¿ëµÇ°í Àִµ¥ ÀÌ ÀåºñµéÀº ºÐÇØ´ÉÀÌ ³·¾Æ »ó±â ¸ñÀûÀ» ´Þ¼º½ÃÅ°±â ¾î·Æ´Ù. µû¶ó¼­ ºÐÇØ´ÉÀÌ ³ô°í ´Ù¾çÇÑ modality¸¦ °®´Â ±¤ÇÐ À̹Ì¡ ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© Áúº´À» Ãʱâ´Ü°è¿¡ Áø´ÜÇÏ°íÀÚ ÇÏ´Â ¿¬±¸°¡ ¼¼°èÀûÀ¸·Î È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù. º» ¹ßÇ¥ ³»¿ë¿¡¼­´Â multimodal optical imaging ¿¡ °üÇÑ ¼¼°èÀûÀÎ ¿¬±¸ ÇöȲ°ú È°¿ë ºÐ¾ß¿¡ ´ëÇؼ­ ¼Ò°³ÇÏ°í º» ¿¬±¸½Ç¿¡¼­ Áö±Ý±îÁö ¼öÇàÇØ ¿Â ¿¬±¸ °á°ú¸¦ ¼Ò°³ ÇÏ°íÀÚ ÇÑ´Ù. º» ¿¬±¸½Ç¿¡¼­ ÇöÀç ¼öÇàÁßÀÎ multimodal imaging systemÀº bio/medical imagingÀ» À§ÇÏ¿© »ýü½ÃÆíÀÇ ÇüÅÂÇÐÀû/ È­ÇÐÀû Ư¼ºÀ» µ¿½Ã¿¡ ÃøÁ¤ ÇÒ¼ö ÀÖµµ·Ï °øÃÊÁ¡(Confocal) Çö¹Ì°æ, À̱¤ÀÚ(Two-photon) Çö¹Ì°æ, ½ºÆåÆ®·² À̹Ì¡(Spectral imaging) Çö¹Ì°æ, Çü±¤ ¼ö¸í ½Ã°£(Fluorescence lifetime) À̹Ì¡ Çö¹Ì°æÀ» Á¶ÇÕÇÑ multimodal imaging systemÀÌ´Ù. multimodal microscopy »Ó¸¸ ¾Æ´Ï¶ó ÀÎü¿¡ Àû¿ëÇÒ ¶§ Á¢±Ù¼ºÀ» ³ôÀ̱â À§ÇÑ multimodal endomicroscopy¿¡ °üÇؼ­µµ ¼Ò°³ ÇÏ°íÀÚ ÇÑ´Ù. º» °­¿¬¿¡¼­´Â °¢ ¸ð´Þ¸®Æ¼ÀÇ Æ¯¼º°ú ÇÔ²² multimodal optical imaging systemÀÇ »ó¼¼ ¼³°è °á°ú¿Í ¸î °¡Áö µ¿¹° ½ÃÆí ¹× ÀÎü Á¶Á÷µéÀÇ º¹ÇÕ À̹Ì¡ ¿µ»ó ȹµæ °á°ú¸¦ ÅëÇÏ¿© Áúº´ÀÇ Á¶±â Áø´Ü °¡´É¼º¿¡ ´ëÇÑ ¿©ºÎ¸¦ ¼Ò°³ ÇÑ´Ù.

¿¬»ç ¼Ò°³ ±Ç´ë°© ±³¼ö

¡Ü ÇÐ ·Â ÇѾç´ë ('75, Çлç), Stuttgart Univ.('87, ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â Visiting Researcher, IPA, µ¶ÀÏ(1982-1987), CEO, NanoScopeSystems Co.(2006-2007), KAIST ±³¼ö(1987-ÇöÀç)

¡Ü ¼ö»ó°æ·Â Minister's Award, Ministry of Trade and Industry ¼ö»ó, President's Award, Korea Industry Technologies Exposition ¼ö»ó, Excellent Researcher Award, KAIST 34th Anniversary ¼ö»ó, Excellent Scholar Award, KAIST 36th Anniversary ¼ö»ó, Minister's Award, Ministry of Education, Science and Technology ¼ö»ó

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬11


KSTAR, ITER ÇÁ·ÎÁ§Æ®¿Í ½ÇÁõÇ÷£Æ® °³¹ß

ÀÌ°æ¼ö¢Ó,ÀÌÀ繦, ±è±â¸¸(±¹°¡ÇÙÀ¶ÇÕ¿¬±¸¼Ò)

Abstract : 1995³â¸» Á¤ºÎ°¡ ÀԾȷ½ÃÇàÇÑ ¡º±¹°¡ÇÙÀ¶ÇÕ°³¹ß±âº»°èȹ¡»¿¡ µû¶ó ¡°Â÷¼¼´ëÃÊÀüµµÇÙÀ¶ÇÕ¿¬±¸ÀåÄ¡°³¹ß»ç¾÷¡±ÀÌ Âø¼öµÇ¾î KSTAR(Korea Superconducting Tokamak Advanced Research) ÀåÄ¡°¡ 4,200¾ï¿ø¿¡ À̸£´Â ¿¬±¸°³¹ßºñ¿Í 11³â¿©¿¡ °ÉÄ£ °³¹ß±â°£À» °ÅÃÄ ¼º°øÀûÀ¸·Î °Ç¼³µÇ¾ú°í, ÇöÀç ±¹°¡ÇÙÀ¶ÇÕ¿¬±¸¼Ò¿¡¼­ ÇÙÀ¶ÇÕ¿¡³ÊÁö »ó¿ëÈ­ ¸ñÇ¥¸¦ ÇâÇØ Á¤»ó ¿î¿µµÇ°í ÀÖ´Ù. ÀÌ·¯ÇÑ ±¹°¡»ç¾÷ÀÇ ¼º°øÀûÀÎ ¿Ï¼ºÀ¸·Î Á¤ºÎ´Â ¼¼°è 7°³±¹ÀÌ °øµ¿°³¹ß¿¡ Âø¼öÇÑ ¡°±¹Á¦ÇÙÀ¶ÇÕ½ÇÇè·Î(ITER)¡± ÇÁ·ÎÁ§Æ®¿¡ À¯·´¿¬ÇÕ, ¹Ì±¹, ÀϺ», Áß±¹ µî°ú µ¿µîÇÑ ÀÚ°ÝÀ¸·Î Âü¿©ÇÏ¿©, ¿ì¸®³ª¶ó ±â¼úÁøÀÌ 50¸¸ ų·Î¿ÍÆ®±Þ ÇÙÀ¶ÇÕ¿¡³ÊÁö ½ÇÁõÀ» ÇâÇÑ ÀåÄ¡ ¹× Ç÷£Æ® °Ç¼³À» ¸®µåÇÏ¸ç »ç¾÷À» ¼öÇà Áß¿¡ ÀÖ´Ù. ÀÌ µÎ ´Ü°è¸¦ ¡°Áß°£ÁøÀÔÀü·«¡±ÀÇ °üÁ¡¿¡¼­ º¸¸é Ãß°Ý°ú µ¿µîÀÇ ´Ü°è¶ó º¼ ¼ö ÀÖÀ¸¸ç, ÀÌÁ¦´Â ¸¶Áö¸· ´Ü°èÀÎ Ãß¿ù·¼±µµ ´Ü°è¸¦ ¼öÇàÇϱâ À§ÇØ 2006³â Á¦Á¤µÈ¡ºÇÙÀ¶ÇÕ¿¡³ÊÁö°³¹ßÁøÈï¹ý¡»°ú µ¿ ½ÃÇà·É¿¡ µû¸¥ Á¤Ã¥¸ñÇ¥ÀÎ ¡°ÇÙÀ¶ÇÕ¿¡³ÊÁö½ÇÁõÇ÷£Æ®¡± ¼³°è¿Í °Ç¼³À» À§ÇÑ ÃßÁø°èȹÀ» ´Ù¾çÇÑ Àü¹®ºÐ¾ßÀÇ Çз¿¬·»ê Àü¹®°¡µéÀÇ Âü¿©ÇÏ¿¡ ÀÔ¾ÈÇÏ¿´À¸¸ç, ±¹°¡»ç¾÷È­¸¦ ÅëÇØ ¿¡³ÊÁö·±âÈĺ¯È­ ½Ã´ëÀÎ 21¼¼±â¿¡ ¿ì¸®³ª¶ó°¡ °úÇбâ¼ú ºÐ¾ß¿Í ¿¡³ÊÁö ºÐ¾ßÀÇ ¼±µµ ±¹°¡·Î ³ª¼­´Âµ¥ Ãʼ®ÀÌ µÉ ÇÙÀ¶ÇÕ¿¡³ÊÁö »ó¿ëÈ­ÀÇ ¼±µµ±¹ÀÌ µÉ ¼ö ÀÖµµ·Ï ÁغñÇÏ°í ÀÖ´Ù. ÀÌ ¹ßÇ¥¿¡¼­´Â KSTAR ÇÁ·ÎÁ§Æ®¿Í ITERÇÁ·ÎÁ§Æ® ¼öÇà °á°ú¿Í °æÇèÀ» ÅëÇØ ÃàÀûµÈ ¿øõ ±â¼úÀ» ¼³¸íÇÏ°í, ½ÇÁõÇ÷£Æ® °³¹ßÀ» À§ÇØ ¿ä±¸µÇ´Â ±â¹Ý¿øõ ±â¼úµé°ú °³¹ß Àü·«À» Á¤¸®ÇÏ¿© ¼³¸íÇÒ °ÍÀÌ´Ù. ÀÌ·¯ÇÑ °èȹÀÇ ÃßÁø °úÁ¤¿¡¼­ ¿øõ±â¼úÀÇ ±â¹ÝÀÌ µÇ´Â ±â¼úµéÀÇ À¶ÇÕ°ú À̸¦ ÅëÇØ ¼¼°è ½ÃÀåÀ» ¼±Á¡ÇÒ ¼ö ÀÖ´Â ½Å¼ºÀå ±â¼úµé¿¡ °üÇØ Á¦¾ÈÀ» ÇÏ°íÀÚ ÇÑ´Ù.

¿¬»ç ¼Ò°³ ÀÌ°æ¼ö ¿¬±¸À§¿ø

¡Ü ÇÐ ·Â ¼­¿ï´ëÇб³ ¹°¸®Çаú (''79 ÀÌÇлç), ¹Ì±¹ Åû罺ÁÖ¸³´ëÇб³('86 ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â KSTAR»ç¾÷´ÜÀå, ITER Çѱ¹»ç¾÷´ÜÀå, ±¹°¡ÇÙÀ¶ÇÕ¿¬±¸¼Ò ¼ÒÀå ¿ªÀÓ  Çö ¿¬±¸À§¿ø, ±¹Á¦ÇÙÀ¶ÇÕÆòÀÇȸ ÀÇÀå

¡Ü ¼ö»ó°æ·Â °úÇбâ¼úºÎ Àå°ü ǥâ, ½ÅÇѱ¹Àλó µî ¼ö»ó

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬12


ÀÚµ¿È­ ±â°è»ê¾÷ ±¹Á¦°æÀï·Â Çâ»óÀ» À§ÇÑ ITÀ¶º¹ÇÕ

±èÀçÇТÓ(ÇÏÀÌÁ¨¸ðÅÍ(ÁÖ))

Abstract : ·Îº¿, °øÀÛ±â°è, »çÃâ½Ã½ºÅÛ ¹× ¿î¹Ý±â°è µî °ÅÀÇ ¸ðµç Àü¹æ»ê¾÷ºÐ¾ß¿¡ À־ ±â°èÀåÄ¡ ÀÚü¸¦ ±¸µ¿ÇÏ´Â ¹æ½ÄÀÌ Á¾·¡ÀÇ ±â°è À¯¾Ð½Ä¿¡¼­ Àü±â. ÀüÀÚ½ÄÀ¸·Î ±Þ¼ÓÈ÷ º¯È­ÇØ °¡°í ÀÖ´Ù. ±×·¯ÇÑ º¯È­ÀÇ Çٽɿ¡´Â »ê¾÷¿ë ÄÄÇ»ÅÍ, IT´Ü¸»±â±â, µð½ºÇ÷¹ÀÌ ÀåÄ¡ ¹× ¼­º¸Á¦¾î °ü·Ã ±â±â µîÀÌ ÀÖ´Ù. ÃÖ±ÙÀÇ »ê¾÷ÀÚµ¿È­ ±â°èÀåÄ¡µéÀº Àü±âÀüÀÚ ¹× Åë½Å ±â¼ú¿¡ ÀÇÇØ ´Ù¼öÀÇ Àüµ¿·Â°ú ¼¾¼­·ù µîÀ» ÇÊ¿äÇÑ °÷¿¡ ºÐ»ê ¹èÄ¡ÇÏ´Â ÇüÅ·Π¹ßÀüÇÏ°í ÀÖÀ¸¸ç ºÐ»ê ¹èÄ¡µÈ °¢ ´Ü¸» ±¸µ¿ÀåÄ¡¸¦ °í¼Ó Åë½Å¿¡ ÀÇÇÑ ³×Æ®¿öÅ©È­¸¦ ÅëÇØ ÅëÇÕ Á¦¾îÇÏ°í À̸¦ HMI³ª ÈÞ´ë¿ë ´Ü¸»±â±â·Î ¿¬°áÇÏ¿© »ç¿ë»óÀÇ Æí¸®¼º°ú ÇÔ²² Á¤º¸Àü´ÞÀÇ ½Å¼Ó¼ºÀ» Ãß±¸ÇÑ´Ù.
 ÀÌ¿Í °°Àº »ê¾÷ ÇöÀåÀÇ ÀÚµ¿È­ ½Ã½ºÅÛ ±¸¼ºÀ» À§ÇÑ ÀüÀåºÎºÐÀÇ ÇÙ½É ¿ä¼Ò¿¡´Â ¸ð¼ÇÁ¦¾î±â, ¼­º¸µå¶óÀ̺ê, °íÁ¤¹Ð ¸ðÅÍ, Á¤¹Ð¼¾¼­ ¹× ºñÁ¯½Ã½ºÅÛÀÌ ÀÖ´Ù. ´ë´Ù¼ö ÀåÄ¡»ê¾÷ÀÇ ¹ßÀüÀÌ Çٽɿä¼Òµé¿¡ ´ëÇÑ ±¹³» ±â¼ú¹ßÀü¿¡ ÀÇÇÑ °Í À̶ó±âº¸´Ù´Â ¼±Áø±¹ Á¦Ç°µéÀÇ ÀϹæÀûÀÎ µµÀÔÇ°¿¡ ±â¹Ý Çؼ­ ¼ºÀåÇÑ  µ¥¿¡ µû¸¥ ¹®Á¦Á¡°ú ƯÈ÷ ¸ð¼Ç½Ã½ºÅÛ¿¡ ´ëÇÑ °æÀï·ÂÈ®º¸¸¦ À§ÇÑ ITÀ¶º¹ÇÕ ¹æÇâ¿¡ ´ëÇÑ °ßÇظ¦ °øÀ¯ÇÏ°íÀÚ ÇÑ´Ù.

¿¬»ç ¼Ò°³ ±èÀçÇÐ ´ëÇ¥ÀÌ»ç

¡Ü ÇÐ ·Â ¼­¿ï´ë ±â°è°øÇаú(70, Çлç) M.I.T. ±â°è°øÇаú(73, ¼®»ç), Univ. of California, Berkeley(77,¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â Çѱ¹Áß°ø¾÷(Çö µÎ»êÁß°ø¾÷) Àü¹«ÀÌ»ç(77-92), World Bank / IBRD ¿ö½ÌÅæ º»ºÎ, Áß±¹/¸ù°í »ê¾÷ ¹× ¿¡³ÊÁö ÇÁ·ÎÁ§Æ® PM(92-95), Æ÷½ºÄڰǼ³ ÇØ¿Ü»ç¾÷º»ºÎÀå/ºÎ»çÀå ¿ªÀÓ(95-99), Çѱ¹Áß°ø¾÷ ¼ö¼®ºÎ»çÀå, µÎ»êÁß°ø¾÷ ´ëÇ¥ÀÌ»ç ºÎ»çÀå ¿ªÀÓ(99-01), ÁÖ½Äȸ»ç È¿¼º ´ëÇ¥ÀÌ»ç(01-07), ÇÏÀÌÁ¨¸ðÅÍ ÁÖ½Äȸ»ç ´ëÇ¥(08-ÇöÀç)

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME °­¿¬13


¿ø·Î±³¼ö¿¡°Ô ±â°è°øÇб³À°À» µè´Â´Ù

À¯Á¤¿­¢Ó(¼­¿ï´ëÇб³ ±â°èÇ×°ø°øÇкÎ)

Abstract : ±â°è°øÇÐÀº ÀüÅëÀûÀ¸·Î ¸ðµç °øÇÐÀÇ ±â¹ÝÀÌ µÇ´Â Çй®À¸·Î¼­ ÀÚ¿¬À» ´ë»óÀ¸·Î ÇÏ´Â °úÇÐ(¹°¸®, È­ÇÐ, »ý¹°)°ú ¼öÇÐÀÇ Åä¾ç¿¡¼­ °íü¿ªÇÐ, µ¿¿ªÇÐ, ¿­¿ªÇÐ, À¯Ã¼¿ªÇÐÀÇ 4´ë ¿ªÇÐÀÌ ±âÃÊ°¡ µÇ¾î ¿¡³ÊÁö ¹× ¹°ÁúÀÇ º¯È¯, ÀúÀå, Àü´Þ, È°¿ë¿¡ ´ëÇÑ ÀÌ·Ð ¹× ÀÌÀÇ ÇÕ¸®Àû ÀÀ¿ëÀ» À§ÇÑ ¼³°è, °¡°ø ¹× Á¦Á¶¸¦ ´Ù·é´Ù. ÇÑÆí, Áö³­ 20¼¼±â·ÎºÎÅÍ ÇöÀçÀÇ 21¼¼±â·Î µé¾î¼­¸é¼­ ±â°è°øÇÐÀº Àü±âÀüÀÚ°øÇÐ, ÄÄÇ»ÅÍ°øÇÐ, È­ÇаøÇÐ, Àç·á°øÇÐ, »ý¹°°øÇÐ, ÀÇÇÐ µîÀÇ ÀÎÁ¢ Çй®µé°ú È°¹ßÇÑ »óÈ£ÀÛ¿ëÀ» ÅëÇÏ¿© ±Ã±ØÀûÀ¸·Î À¶º¹ÇÕµÈ ±â°è½Ã½ºÅÛÀ» ´Ù·ç°Ô µÇ¾ú´Ù. ÀÌ¿Í °°Àº ±â°è°øÇÐÀÇ È¯°æ ¹× ¿©°Ç º¯È­¿¡ ºñÇÏ¿© ¿ì¸®³ª¶ó ±â°è°øÇб³À°Àº ¾ÆÁ÷µµ ¼³°è±³À°ÀÇ ºÎÀç, ½ÇÇè½Ç½À±³À°ÀÇ ºÎ½Ç, Àü¹®±³À°ÀÇ ºÎ½Ç ¹× ÈƷñâ´ÉÀÇ °á¶ô µîÀ¸·Î ÀÎÇÏ¿© Çö½Ç±â¿©´É·ÂÀÌ ¹Ú¾àÇÑ ±â¼úÀÚ¸¦ ¾ç»êÇÏ°í ÀÖ´Ù´Â ¿ì·Á·ÎºÎÅÍ ÀÚÀ¯·ÓÁö ¸øÇÑ ½ÇÁ¤ÀÌ´Ù. µû¶ó¼­ ¿ì¸®³ª¶ó ±â°è°øÇб³À°ÀÇ °³¼±À» À§ÇÏ¿©´Â ÇöÀåÀ§ÁÖÀÇ Àü¹®±â°è±â¼úÀη ¾ç¼º, ¼³°è´É·ÂÀÇ Çâ»ó, Áß¼ÒÁ¦Á¶±â¾÷ÀÇ ÀáÀçÀû â¾÷ÁÖ ¾ç¼º, Àü¹®ºÐ¾ß·Î Ư¼ºÈ­µÈ °ø°ú´ëÇÐÀÇ À°¼º, »êÇÐÇùµ¿ÀÇ ½ÇÁúÀû °­È­ µîÀÇ ³ë·ÂÀ» °æÁÖÇÏ¿©¾ß ÇÒ °ÍÀÌ´Ù. À̸¦ À§ÇÏ¿© ±â°è°øÇб³À°ÀÌ ±âº»ÀûÀ¸·Î À¯ÁöÇÏ¿©¾ß Çϴ ƲÀº ±â°è°øÇпø¸®ÀÇ Á¶±â±³À°, ±â°è°øÇÐÀü°øÀ» À§ÇÑ ±âº»ÀûÀÎ µµ±¸ÀÇ ±³À°, ¿ªÇаú¸ñÀÇ Ãæ½ÇÇÑ ÀÌÇØ, ÇÁ·ÎÁ§Æ® °ú¸ñÀÇ È°¼ºÈ­, ¼³°è ¹× Á¦Á¶ °ú¸ñÀÇ µµÀÔ, ½Ç¿ë °øÇаú °ü·ÃµÈ °ú¸ñ ¼Ò°³, ¼öµ¿ÀûÀÎ ±³À°¿¡¼­ ´Éµ¿ÀûÀÎ ÇнÀÀ¸·ÎÀÇ Àüȯ, ´Ù¾çÇÑ Áø·Î¿¡ ´ëºñÇÑ ±³°ú°úÁ¤ °³Æí µîÀÌ ¿ä±¸µÇ°í ÀÖ´Ù.

¿¬»ç ¼Ò°³ À¯Á¤¿­ ±³¼ö

¡Ü ÇÐ ·Â ¼­¿ï´ë °ø´ë ±â°è°øÇаú(69 Çлç) ¹Ì±¹ ¹Ì³×¼ÒŸ´ëÇб³(73, ¼®»ç, 77 ¹Ú»ç)

¡Ü ÁÖ¿ä°æ·Â ¼­¿ï´ë ±â°è°øÇаú/±â°èÇ×°ø°øÇкΠÁ¶±³¼ö/ºÎ±³¼ö/±³¼ö(78-12), ¼­¿ï´ë °ø´ë ±³¹«´ã´çÇÐÀ庸(90-92), ¼­¿ï´ë ±³¹«ºÎóÀå(92-95), BK21 ¼­¿ï´ë ±â°èºÐ¾ß »ç¾÷´ÜÀå(99-01), ¹Ì±¹±â°èÇÐȸ Çѱ¹ÁöºÎ ȸÀå(00-02), Çѱ¹ÇмúÁøÈïÀç´Ü »ç¹«ÃÑÀå(01-03), ´ëÇѱâ°èÇÐȸ ȸÀå(04), ¼­¿ï´ë Á¤¹Ð±â°è¼³°è°øµ¿¿¬±¸¼Ò ¼ÒÀå(05-09), ¼­¿ï´ë ÆòÀÇ¿ø(05-09)

¡Ü ¼ö»ó°æ·Â ´ëÇѱâ°èÇÐȸ Çмú»ó(90), ¼­¿ï´ë °ø´ë ÈǸ¢ÇÑ °ø´ë±³¼ö»ó ¿¬±¸»ó(03), ¹Ì±¹±â°èÇÐȸ ¸¶ÀÌÅ©·Î/³ª³ë½Ã½ºÅÛ ±¹Á¦ÇмúȸÀÇ ÃÖ¿ì¼ö³í¹®»ó(07), ´ëÇѱâ°èÇÐȸ °ø·Î»ó(11), ¼­¿ï´ë °ø´ë ¿ì¼ö¿¬±¸»ó(11), ±ÙÁ¤ÈÆÀå ³ìÁ¶(12)

À¯¸Á°úÇбâ¼úÀÚ ¼¼¼Ç ¾È³»

À¯¸Á°úÇбâ¼úÀÚ ¼¼¼Ç [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

¿ì¸® ÇÐȸ¿¡¼­´Â ±â°è°øÇÐ(»ê¾÷) ºÐ¾ß¿¡ »õ·ÎÀÌ ÁøÃâÇÑ ÀþÀº °úÇбâ¼úÀÚµéÀÌ ¿ì¸® ÇÐȸ Çмú´ëȸ¿¡¼­ ±â°è ºÐ¾ß¿¡ ¸ö´ã°í °è½Å ¿©·¯ºÐ²² ÀÚ½ÅÀ» ¼Ò°³ÇÔÀ¸·Î½á ÇмúÈ°µ¿¿¡ º¸´Ù Ä£¼÷ÇÏ°Ô Àû±ØÀûÀ¸·Î Âü¿©ÇÒ ¼ö ÀÖµµ·Ï À¯µµÇϱâ À§ÇÏ¿© Áö³­ 07Ãá°èÇмú´ëȸºÎÅÍ ºÎ¹®º°·Î ¿î¿µÇÏ°í ÀÖ´Â ¼¼¼ÇÀÔ´Ï´Ù.
±Ý¹ø Çмú´ëȸ¿¡¼­´Â ¾Æ·¡¿Í °°ÀÌ ÁøÇàµÉ ¿¹Á¤ÀÌ¿À´Ï ȸ¿ø ¿©·¯ºÐÀÇ ¸¹Àº °ü½É ¹Ù¶ø´Ï´Ù.


* À¯¸Á °úÇбâ¼úÀÚÀÇ Á¤ÀÇ

ÃÖ±Ù 5³â À̳»¿¡ ¹Ú»çÇÐÀ§¸¦ ¹ÞÀº ÈÄ È°µ¿ ÁßÀÎ °úÇбâ¼úÀÚ³ª 5³â À̳»¿¡ ÇöÁ÷¿¡ ÀÓ¿ëµÈ ±³¼ö

¢º CAE ¹× ÀÀ¿ë¿ªÇкι®

ÀÌ ¸§

Á¦ ¸ñ

ÀÌÇü¼®
(¿¬¼¼´ëÇб³)

Relationship between cell shape and function in cardiac myocytes

ÀåÀαÇ
(KAIST)

À§»óÃÖÀû¼³°è ¹æ¹ýÀÇ »ýü¿ªÇÐÀ¸·ÎÀÇ Àû¿ë

ÀÌⱸ
(¼º±Õ°ü´ëÇб³)

Mechanical properties of graphene and 2-dimensional materials

¢º µ¿¿ªÇÐ ¹× Á¦¾îºÎ¹®

ÀÌ ¸§

Á¦ ¸ñ

±èÃæȯ
(Ãæ³²´ëÇб³)

ÀμâÀüÀÚ¿ë ·ÑÅõ·Ñ Àåºñ ±â¼ú – ¼³°è, Á¦¾î, ÀÀ¿ë, Ç¥ÁØÈ­

ÀÌÄ¡¹ü
(¼­¿ï°úÇбâ¼ú´ëÇб³)

µ¿Àû ¿øÀÚÇö¹Ì°æÀÇ ¸ðÇü½Ã½ºÅÛ ÀÌ¿ëÇÑ Á¦¾î
Control with Mock System for Dynamic Mode AFM

°ø°æö
(¼­°­´ëÇб³)

°í¼ÓÁÖÇà·Îº¿À» À§ÇÑ µ¿ÀûºÐ¼®, ±¸µ¿±â ¹× Á¦¾î±â ¼³°è ¿¬±¸

Á¤ÀÎÈ­
(°æÈñ´ëÇб³)

¹ÝµµÃ¼ ³ª³ë¹Ú¸·¿¡ ±â¹ÝÇÑ »ýü¸ð»ç µð¹ÙÀ̽º Á¦ÀÛ ¹× ±×·¡ÇÉ ±â¹Ý ¹°ÁúÀÇ ±¤/Àü±âÀû Ư¼º ºÐ¼®¿¡ ´ëÇÑ ¿¬±¸
Development of bio-mimetic devices based on silicon-nanomembrane and optical/electrical characterization of graphene-based materials

¢º ¿­°øÇÐ ºÎ¹®

ÀÌ ¸§

Á¦ ¸ñ

¼Õâ¹Î
(ºÎ»ê´ëÇб³)

Detailed investigation of the flow and heat transfer in a high pressure turbine disk cavity and blade shank cavity

µµ±ÔÇü
(KIMM)

°íÁý±¤ ž籤 ¸ðµâ¿ë ¼öµ¿Çü ³Ã°¢ÀåÄ¡¿¡ °üÇÑ ¿¬±¸

³²¿µ¼®
(°æÈñ´ëÇб³)

Scalable Micro/Nano Engineered Surfaces for Advanced Phase Change Applications

À̺ÀÀç
(KAIST)

Thermal Radiative Properties of Nanostructures

¢º À¯Ã¼°øÇкι®

ÀÌ ¸§

Á¦ ¸ñ

±èÁ¤¿ì
(¼­¿ï°úÇбâ¼ú´ëÇб³)

Immersed boundary methods: current status and perspectives

À¯µ¿Çö
(Æ÷Ç×°ø°ú´ëÇб³)

Computational design of fluid-structure interaction with biological inspiration for energy/propulsion applications

ÀÌÁø±â
(¼º±Õ°ü´ëÇб³)

Synthesis of monodispersed particles by micromold technique

Á¶Çü±Ô
(Çѱ¹¿øÀڷ¿¬±¸¿ø)

Simulation of the Two-phase Natural Circulation in the Passive Auxiliary Feedwater System

Ãֹμ®
(¸íÁö´ëÇб³)

Effects of the distancd and phase angle difference between two vibrating plates

¢º ½Å·Ú¼ººÎ¹®

ÀÌ ¸§

Á¦ ¸ñ

±è°æ¸ñ
(Çѱ¹Ç×°ø´ëÇб³)

Á¡Âø¼º ¿µ¿ª ¹ýÄ¢ÀÇ ÀÌÇØ¿Í ÀÀ¿ë

±èÅüö
(KAIST)

Mechanical Reliability of Advanced Thin Films

¢º ¹ÙÀÌ¿À°øÇкι®

ÀÌ ¸§

Á¦ ¸ñ

¹Ú¿ìÅÂ
(¼­¿ï°úÇбâ¼ú´ëÇб³)

Micro/nano technologies for medical devices

Ç㵿Àº
(¼­¿ï´ëÇб³)

A HUMAN BREATHING LUNG-ON-A-CHIP FOR DRUG SCREENING AND NANOTOXICOLOGY APPLICATIONS

¹Ú¿ø¸¸
(°æÈñ´ëÇб³)

À¯ÇÑ¿ä¼Ò Çؼ®À» ÀÌ¿ëÇÑ Ãß°£ÆÇ ÅðÇàÀÌ ¿äÃߺΠ»ýü¿ªÇп¡ ¹ÌÄ¡´Â ¿µÇ⠺м®

±è¼ºÀç
(¼­¿ï´ëÇб³)

High efficient and low-cost polymeric nanofluidic system and its applications

ÀüÈ£Á¤
(¼­¿ï°úÇбâ¼ú¿¬±¸¿ø)

ÃÊÁ¤¹Ð ·¹ÀÌÀú ³ª³ëÆÐÅÍ´× ±â¼úÀ» ÀÌ¿ëÇÑ ¼¼Æ÷ °Åµ¿ Á¦¾î

±èµµÇö
(¸íÁö´ëÇб³)

Protein detection on chip: microfluidic polyacrylamide gel electrophoresis and isotachophoresis

¢º ¸¶ÀÌÅ©·Î/³ª³ë°øÇкι®

ÀÌ ¸§

Á¦ ¸ñ

±èÇмº
(ÇѾç´ëÇб³)

White intense pulsed light sintering technology and its application for printed electronics

Á¤ÈÆÀÇ
(¿ï»ê°úÇбâ¼ú´ëÇб³)

Bacterial recognition of nanowire arrays

ÀÌÁ¾È£
(±¤ÁÖ°úÇбâ¼ú¿ø)

Stretchable Electronics Technologies For High Performance Devices

À̺´¾ç
(°í·Á´ëÇб³)

Molecular Mechanism of the Piezoelectricity of M13 Phages

°­¿¬ÃÊ·Ï

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á01


Relationship between cell shape and function in cardiac myocytes

ÀÌÇü¼®¢Ó(¿¬¼¼´ëÇб³)

Keyword : cell patterning, contractility, traction force microscopy, cardiomyocyte, heart failure

Abstract : Significant structural remodeling is observed in most of the heart diseases such as hypertrophy, ischemic cardiomyopathy, and heart failure. Gross structural change of the heart chambers is directly reflected at the cellular level by altering the morphology of individual cardiomyocytes. However, the relationship between cardiomyocytes shape and the mechanical dysfunction is still unknown. Utilizing traction force microscopy combined with the cell patterning technique, we analyzed systolic stress of cardiomyocytes as a function of cell shape. We found that cardiomyocyte contractility is optimized at the cell length to width ratio observed in normal hearts, and decreases in cardiomyocytes with morphologies resembling those isolated from failing hearts. Quantitative analysis of sarcomeric architecture revealed that the change of contractility may arise from alteration of myofibrillar structure. We also measured intracellular calcium in myocytes with varied aspect ratios and found that calcium transients decayed slowly in cells with high aspect ratios. Our data suggest that myocyte shape is critical in determining pumping performance of the ventricular wall by regulating the intra-cellular structure and calcium handling ability.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á02


À§»óÃÖÀû¼³°è ¹æ¹ýÀÇ »ýü¿ªÇÐÀ¸·ÎÀÇ Àû¿ë

ÀåÀαǢÓ(Çѱ¹°úÇбâ¼ú¿ø)

Keyword : Bone remodeling, bone adaptation, topology optimization, design space optimization, proximal femur, Wolff¡¯s law

Abstract : There are a large number of clinical and experimental studies that analyzed trabecular architecture as a result of bone adaptation. However, only a limited amount of quantitative data is currently available on the progress of trabecular adaptation during growth. In this study, we proposed a systematic numerical simulation method that predicts trabecular adaptation progress during growth using a recently developed topology optimization algorithm, design space optimization (DSO), under the hypothesis that the mechanisms of DSO are functionally equivalent to those of bone adaptation. We applied the proposed scheme to trabecular adaptation simulation in human proximal femur. For the simulation, the full trabecular architecture in human proximal femur was represented by a two dimensional ¥ìFE model with 50¥ìm resolution. From the comparison with experimental data in the literature, we showed that in the early growth stage trabecular adaptation was achieved mainly by increasing bone volume fraction (or trabecular thickness), while in the later stage of the development the trabecular architecture gained higher structural efficiency by increasing structural anisotropy with a relatively low level of bone volume fraction (or trabecular thickness). We demonstrated that the proposed numerical framework predicted the growing progress of trabecular bone that has a close correlation with experimental data.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á03


Mechanical properties of graphene and 2-dimensional materials

ÀÌⱸ¢Ó(¼º±Õ°ü´ëÇб³)

Keyword : Nanomechanics, Nano tribology, Graphene, 2D materials

Abstract : Mechanical and tribological properties of monolayer and a few layer 2D materials including graphene have been characterized. The Young¡¯s modulus and ultimate strength of single crystal monolayer graphene are 1TPa and 130GPa. The measurements established graphene as the strongest material ever measured and as one of the stiffest materials. Single layer hydrogenated graphene and MoS2 have also been tested. The hydrogenated graphene has about 50% of Young¡¯s modulus and strength of pristine graphene. MoS2¡¯s strength was about 23GPa. Single asperity friction tests on graphene by atomically smooth AFM tips on nano- and atomic-scales revealed that friction on graphene increases with decreasing thickness when the film thickness approaches monolayer. The friction on single layer graphene is about 2~3 times higher than bulk graphite. Still the friction on graphene is quite low considering the ultralow friction coefficient of bulk graphite. Macro-scale investigations of mono or a few layer graphene have been made to measure tribological properties also. These studies suggest that thin graphene sheets have a great potential to be used for lubrication and coating on various applications.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á04


ÀμâÀüÀÚ¿ë ·ÑÅõ·Ñ Àåºñ ±â¼ú – ¼³°è, Á¦¾î, ÀÀ¿ë, Ç¥ÁØÈ­

±èÃæȯ¢Ó(Ãæ³²´ëÇб³)

Keyword : Printed electronics(ÀμâÀüÀÚ), Roll-to-roll(·ÑÅõ·Ñ), Printing machine(Àμâ Àåºñ)

Abstract : Recently, printed electronics have gained interests from academia and industries. It is an emerging manufacturing technology to fabricate low-cost electronic devices and appliances such as flexible displays, solar cells, RFIDs, touch screen panels, FPCB, sensors, and so on, with printing technologies. The roll-to-roll printing machine is remarked as the manufacturing system for the mass production of these flexible and large-sized applications. Although the roll-to-roll printing technology is based on the conventional graphic arts printing one, the roll-to-roll printing machine for printed electronics requires much more advanced and precise performances than the conventional one. In this presentation, the current technologies and issues of design, control, application, and standardization of roll-to-roll printing machine are introduced.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á05


µ¿Àû ¿øÀÚÇö¹Ì°æÀÇ ¸ðÇü½Ã½ºÅÛ ÀÌ¿ëÇÑ Á¦¾î
Control with Mock System for Dynamic Mode AFM

ÀÌÄ¡¹ü¢Ó(¼­¿ï°úÇбâ¼ú´ëÇб³)

Keyword : Atomic force microscopy(¿øÀÚÇö¹Ì°æ), robust control(°­ÀÎ Á¦¾î), multi-objective optimization(´ÙÁß ¸ñÀû ÃÖÀûÈ­), Cantilever(ĵƼ·¹¹ö), ¸ðÇü½Ã½ºÅÛ(Mock system)

Abstract : This study presents a novel dynamic mode Atomic Force Microscope where the deflection signal is directly used for force regulation instead of its amplitude or phase. Cantilever mock system without the interaction with cantilever is composed and included in the control algorithm. The control synthesis problem is posed in a robust optimal control and multi-objective LMI framework. A method to estimate the interaction force and extract the sample topography from it is also presented. This method can be efficient in high speed AFMs where the scanning bandwidths are more than 10% of the natural frequency of the cantilevers, therefore make possible to high speed imaging without compromising on the bandwidth and resolution.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á06


°í¼ÓÁÖÇà·Îº¿À» À§ÇÑ µ¿ÀûºÐ¼®, ±¸µ¿±â ¹× Á¦¾î±â ¼³°è ¿¬±¸

°ø°æö¢Ó(¼­°­´ëÇб³)

Keyword : Robotics(·Îº¿°øÇÐ), Bio-inspired Robots(¹ÙÀÌ¿À¸ð¹æ·Îº¿), Control(Á¦¾î)

Abstract : Several legged robots developed in recent years have proved that they are an effective transportation system on an uneven terrain. In particular, quadruped robots are regarded as a new trend in robotics due to their superior gait stability and robustness to disturbances. More recently, many robotics researchers are making their best efforts to improve the locomotion speed, as well as the stability and robustness, of quadruped robots. The high-speed locomotion creates various challenges in the development of actuators, mechanical design, and control algorithms. In this paper, a linear actuation system for the high-speed locomotion of a quadruped robot is introduced. The proposed actuator is designed by adopting the principle of brushed direct-current electric motor systems. For the minimal impedance and improved force capacity, the actuator is designed with dual layers of cores, which are aligned parallel to permanent magnets. The mechanical and electrical properties of the actuation system, such as back-drivability, controllability, and response-time, are verified by experimental results. A robotic leg, which is the rear leg of a cheetah-like robot, is designed with the proposed actuator, and is introduced briefly in this paper also.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á07


¹ÝµµÃ¼ ³ª³ë¹Ú¸·¿¡ ±â¹ÝÇÑ »ýü¸ð»ç µð¹ÙÀ̽º Á¦ÀÛ ¹× ±×·¡ÇÉ ±â¹Ý ¹°ÁúÀÇ ±¤/Àü±âÀû Ư¼º ºÐ¼®¿¡ ´ëÇÑ ¿¬±¸
Development of bio-mimetic devices based on silicon-nanomembrane and optical/electrical characterization of graphene-based materials

Á¤ÀÎÈ­¢Ó(°æÈñ´ëÇб³)

Keyword : electronic eyeball camera (¾È±¸Çü Ä«¸Þ¶ó), flexible electronics (Ç÷º¼­ºí ÀüÀÚ°øÇÐ), graphene-based materials (±×·¡ÇÉ ±â¹Ý ¹°Áú)

Abstract : Recent advances in nano-science and technology has activated interactions between diverse research areas. In this seminar, I will present three research areas which are related with mechanical engineering, materials engineering and nano-technology. These research topics are as follows.
1. Eyeball Cameras Based on Silicon Nanomembranes
2. Optical and Electrical Characterization of Graphene-based Materials
The first part is about imaging systems that exploit arrays of photodetectors in curvilinear layouts are attractive due to their ability to match the strongly nonplanar image surfaces that form with simple lenses. This work describes a class of digital imaging device which consist of photodetector arrays on thin elastomeric membranes, capable of reversible deformation into hemispherical shapes with radii of curvature that can be adjusted dynamically, via hydraulics.
The second part is about researches on, the optical and electrical properties of graphene-based materials. In particular, ¡°graphene oxide¡±, which is an individual layer of graphite oxide, and its chemically reduced form, is probed in terms of its properties, and the properties of graphene oxide are compared with the properties of graphene.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á08


Detailed investigation of the flow and heat transfer in a high pressure turbine disk cavity and blade shank cavity

¼Õâ¹Î¢Ó(ºÎ»ê´ëÇб³)

Keyword : High pressure turbine, disc cavity, blade shank cavity, rotating and static tests

Abstract : There has been a steady increase in the compressor delivery pressures used in aircraft gas turbines. This has meant that the cooling potential available from the turbine cooling air has progressively reduced so that the turbine designer must now pay careful attention to thermal boundary conditions at the disk rim. The present research has focused on the understanding of flow and heat transfer in a high pressure turbine disk cavity and blade shank cavity.
As part of an effort to understand the heat transfer situation in the blade pocket of a high pressure turbine disk, some exploratory rotating tests have been conducted using a modified ¡°Spinning Rig¡±. The aim of this work is to investigate the heat transfer coefficient distribution on the top and bottom of the disk pocket. However, in order to achieve this goal, it has been necessary to innovate new measurement strategies and instrumentation. The experiments were carefully set up to match all important engine dimensionless groups. Results are also compared to CFD predictions and data from a static model to examine the buoyancy effect.
The results from the rotating rig are compared to CFD predictions and data from a static rig test.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á09


°íÁý±¤ ž籤 ¸ðµâ¿ë ¼öµ¿Çü ³Ã°¢ÀåÄ¡¿¡ °üÇÑ ¿¬±¸

µµ±ÔÇü¢Ó(Çѱ¹±â°è¿¬±¸¿ø)

Keyword : High CPV module cooling(°íÁý±¤ ž籤 ¸ðµâ ³Ã°¢), Natural convective heat sink(ÀÚ¿¬´ë·ù È÷Æ®½ÌÅ©), Inclination angle(°æ»ç°¢), Thermal resistance correlation(¿­ÀúÇ× »ó°ü½Ä)

Abstract : In the present work, a passive cooling device using a natural convective heat sink with plate fins is studied for high concentrating photovoltaic (CPV) module cooling. Special emphasis is laid on the effect of the inclination angle on the thermal performance of the natural convective heat sink with plate-fins since the inclination angle of the heat sink located on the backside of the CPV module changes, when CPV systems are adjusted by sun tracking systems throughout the day. Extensive experiments are conducted for various heat sink geometries, input power, as well as inclination angle. On the basis of the experimental data, a correlation is newly proposed for estimating the thermal resistance of the natural convective heat sink with plate-fins according to the inclination angle. From the comparison between the proposed correlation and the previous studies, the effect of the fin spacing on the thermal performance of the natural convective heat sink is examined for two limiting cases: the vertical orientation and the horizontal orientation facing downward. Finally, optimal fin spacing as a function of the inclination angle and the temperature difference for a specific geometry is discussed. Optimal fin spacing strongly depends on the temperature difference as well as the inclination angle. The optimal fin spacing is significantly changed when the inclination angle is larger than 70 degrees.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á10


Scalable Micro/Nano Engineered Surfaces for Advanced Phase Change Applications

³²¿µ¼®¢Ó(°æÈñ´ëÇб³)

Keyword : Phase Change (»óº¯È­), Copper Oxide (±¸¸®»êÈ­¹°), Evaporation (Áõ¹ß), Condensation(ÀÀÃà), Nano surfaces (³ª³ë Ç¥¸é), Cupric oxide, thermal management (¿­°ü¸®), heat exchanger (¿­±³È¯±â)

Abstract : Morphology and chemistry of surfaces have a significant effect on liquid-vapor phase change phenomena by affecting the Morphology and chemistry of surfaces have a significant effect on liquid-vapor phase change phenomena by affecting the interaction between solid-liquid-vapor phases. We introduce new scalable phase change heat transfer surfaces with CuO nanostructures, and discuss various phase change phenomena on the surfaces. The unique morphology and high surface energy of CuO enable us to enhance both the evaporative heat transfer coefficient and critical heat flux by increasing the evaporative thin film area and capillary performance, respectively. The effective heat transfer coefficient over 10 W/cm2K and the critical heat flux over 500 W/cm2 are experimentally demonstrated on the new surfaces. After lowering their surface energy with self-assembled monolayer coatings, the CuO nanostructures can provide coalescence induced self-propelled droplet jumping and minimize the thermal resistance during condensation. The condensation heat transfer coefficient on the new surfaces is measured to be 20-30% higher than the value obtained with previous state of the art dropwise condensing surfaces. Our work suggests a promising approach to engineering phase change phenomena on surfaces and helps develop advanced thermal and environmental applications including thermal management modules, heat exchangers and water harvesting solutions.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á11


Thermal Radiative Properties of Nanostructures

À̺ÀÀç¢Ó(Çѱ¹°úÇбâ¼ú¿ø)

Keyword : Radiative Properties, Nanostructures, Surface Plasmon, Magnetic Resonance

Abstract : Controlling thermal radiative properties using micro- and nano-structured surfaces has drawn much attention due to potential applications in energy conversion devices, space thermal management, and infrared radiation detection. This presentation describes a theoretical and experimental study about the coherence of thermal emission from a truncated one-dimensional photonic crystal atop a metallic layer. Surface electromagnetic waves can be excited at the edge of photonic crystal, enabling the spectral- (i.e., temporal coherence) and directional-selectivity (i.e., spatial coherence) in the emissivity.
Besides photonic crystals, coherent emission characteristics can also be achieved by exciting magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer. This artificial structure is equivalent to a pair of single-negative materials, resulting in large emissivity peaks that are almost independent of the emission angle at resonance frequencies.
Finally, this presentation will outline the current and future research activities in modeling the radiative properties of multidimensional nanostructures.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á12


Immersed boundary methods: current status and perspectives

±èÁ¤¿ì¢Ó(¼­¿ï°úÇбâ¼ú´ëÇб³)

Keyword : Immersed boundary method (°¡»ó°æ°è¹æ¹ý), complex geometry (º¹ÀâÇÑ Çü»ó)

Abstract : In this talk, the current status of immersed boundary methods is presented. In the immersed boundary methods, the momentum forcings (or mass source/sink) are applied on the body surface or inside the body to satisfy the no-slip boundary condition on the immersed boundary (or the continuity for the cell containing the immersed boundary). The immersed boundary method was first developed by Peskin (1972). This approach is usually called continuous forcing approach. Recently, new immersed boundary methods called discrete forcing approach have been developed by Mohd-Yusof (1996), Fadlun et al. (2000) and Kim et al. (2001) and so on. Since then, the immersed boundary methods have become very popular due to their capability in handling the flow over or inside complex geometries with some benefit in terms of computational efforts. For the last decade, the accuracy and efficiency of the present immersed boundary have been demonstrated for many different flow fields. To see them, some numerical simulations such as Yun et al. (2006) would be also shown. Finally in concluding this talk, based on the author¡¯s personal research experience, some perspectives of the immersed boundary methods would be presented for the new decade.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á13


Computational design of fluid-structure interaction with biological inspiration for energy/propulsion applications

À¯µ¿Çö¢Ó(Æ÷Ç×°ø°ú´ëÇб³)

Keyword : Fluid-Structure Interaction, Biological Design, Optimization, Propulsive Kinematics

Abstract : Adaptation of functions and mechanisms of biological systems can lead to new and innovative designs in a variety of energy conversion and propulsion systems. The present research aims at designing biologically-inspired and optimized energy harvesting and propulsive kinematics for aero- or hydro-foils, blades, and propellers with active and/or passive deformation. The computational methodology combines a mass-conserving immersed-boundary method, which is capable of simulating flow over non-grid-conforming complex moving bodies and a structural dynamics method, which is based on a finite-element method and is capable of predicting time-accurate linear and non-linear dynamics of composite structures. The high-fidelity simulation capability for prediction of fluid-structure interaction, is coupled with a surrogate management framework for non-gradient-based multivariable optimization to achieve the goal of developing biologically-inspired and optimized novel kinematics for energy conversion and propulsion. The newly developed biological kinematics can be incorporated into mechanical systems with the help of tailored composite or smart materials, which can be aligned and stacked to realize the active and passive deformation.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á14


Synthesis of monodispersed particles by micromold technique

ÀÌÁø±â¢Ó(¼º±Õ°ü´ëÇб³)

Keyword : Microfluidics(¹Ì¼¼À¯Ã¼¿ªÇÐ), Surface tension (°è¸éÀå·Â), micromold(¸¶ÀÌÅ©·Î¸ôµå), Microparticles(¸¶ÀÌÅ©·ÎÀÔÀÚ)

Abstract : In this presentation, I want to discuss about the fluid mechanical researches for Interdisciplinary applications. The topic is synthesis of monodispersed microparticles. Not only the complex particles with various shapes such as bullets, cylinders, discs, hearts, hexagons, and Janus particles but microspheres can be synthesized by the surface-tension-induced flow and Laplace pressure induced flows in micromolds. Along with the various shapes of the particles, a novel synthesis method shows the flexibility to synthesize particles using various reaction schemes, such as photopolymerization, sol-gel reactions, and colloidal assembly. This method can produce highly monodispersed particles, without the need to use complicated control. It allows high flexibility in choosing materials and size control.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á15


Simulation of the Two-phase Natural Circulation in the Passive Auxiliary Feedwater System

Á¶Çü±Ô¢Ó(Çѱ¹¿øÀڷ¿¬±¸¿ø)

Keyword : Nuclear Thermal Hydraulics (¿øÀÚ·Î ¿­¼ö·Â), Two-phase Flow (2»ó À¯µ¿), Passive Cooling System (Çǵ¿ ³Ã°¢ °èÅë)

Abstract : For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper introduces the simulation results for the PCCT (passive condensate cooling tank) of the PASCAL facility performed with the CUPID code in order to investigate the thermal hydraulic phenomena in the PCCT. The calculated collapsed water level and local liquid temperature are in good agreement with measured data and the simulation results verified that the important thermal hydraulic characteristics in the PCCT, such as the two-phase natural circulation and the boil-off phenomena, have been successfully reproduced by CUPID. This paper presents the description of the PASCAL test facility, the physical models of the code and its simulation result for the PCCT.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á16


Effects of the distancd and phase angle difference between two vibrating plates

Ãֹμ®¢Ó, ±è¿ëȯ(¸íÁö´ëÇб³, Æ÷½ºÄڰǼ³)

Keyword : Vibrating Plate (Áøµ¿ ÆòÆÇ), Counter-Rotating Vortices (»óÈ£¿ªÈ¸Àü ¿Í·ù)

Abstract : The unsteady flow fields generated by two plates were computed using a commercial flow solver. Based on the validation for a single vibrating plate, the effect of the distance and phase angle difference between two plates were analyzed by using the unsteady flow and the time-averaged velocity distribution. When two plates were vibrating in phase, their performance was inferior to the single plate regardless of the distance in terms of the maximum velocity and mass flow rate. Otherwise, two vibrating plates in counter-phase generate stronger axial flow and two times more flow rate for cooling than the single plate, unless the plates are too close. It was found that the optimal distance between two plates in counter-phase might be twice the size of the fully-grown vortex generated by the single plate. In addition, an attempt has been made to explain the performance variation of two vibrating plates based on the vortex-interaction.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á17


Á¡Âø¼º ¿µ¿ª ¹ýÄ¢ÀÇ ÀÌÇØ¿Í ÀÀ¿ë

±è°æ¸ñ¢Ó(Çѱ¹Ç×°ø´ëÇб³)

Keyword : Cohesive zone law(Á¡Âø¼º ¿µ¿ª ¹ýÄ¢), bending(±¸ºÎ¸²), fatigue(ÇÇ·Î), fracture(Æı«)

Abstract : A method using cohesive zone law allows simulating interfacial fracture between physical parts and characterizing post-yield softening with bilinear, exponential, power-law, polynomial, or trapezoidal form. In addition, traction and separation response in a cohesive zone law includes stiffness degradation during cyclic loading. For the purpose of practical use, cohesive zone laws need to be understood. This study describes a bilinear, cycle-dependent cohesive zone law and its application to high-cycle bending fatigue. Bending fatigue tests with aluminium alloys are performed at stress ratio of -1. Finite element simulation is employed under the condition similar to that considered in the experiment. It is demonstrated that the proposed method allows simulating high-cycle fatigue of aluminium alloys.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á18


Mechanical Reliability of Advanced Thin Films

±èÅüö¢Ó(KAIST)

Keyword : thin films, fracture mechanics testing, fracture energy, crack growth rates

Abstract : Thin films are ubiquitous and important in many modern technologies such as microelectronic devices, fuel cells, solar cells, and batteries. This study presents 1) thin film fracture mechanics testing to diagnose environmentally assisted crack growth, adhesion and cohesion of advanced thin films, and 2) novel methods to improve the fracture properties.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á19


Micro/nano technologies for medical devices

¹Ú¿ìÅ¢Ó(¼­¿ï°úÇбâ¼ú´ëÇб³)

Keyword : Medical Devices, MEMS, NEMS

Abstract : MEMS and nano technologies are now widely used for automobile safety sensors and consumer devices such as the iPhone. Looking forward, the forecast for MEMS devices show the largest percentage growth in the biomedical sector. Nano technologies used for medical devices has been the dream for many engineers since the 1960s, and now slowly showing up in commercial devices to enhance the performance, reduce the cost, and enabling new possibilities over conventional solutions. This talk will introduce some of the biomedical device research work under Singapore¡¯s Medtech program. Projects introduced will be about 1) novel neural probe design and fabrication for improved chronic recording, 2) sensorized guidewires for safety and navigation, 3) implantable flow sensor for prothetic graft failure detection, and 4) nanomechanical resonators as a biosensor.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á20


A HUMAN BREATHING LUNG-ON-A-CHIP FOR DRUG SCREENING AND NANOTOXICOLOGY APPLICATIONS

Ç㵿Àº¢Ó(¼­¿ï´ëÇб³)

Keyword : microfluidics, lung, organ-on-a-chip, biomimetics, nanotoxicology

Abstract : Here we describe a biomimetic microsystem that reconstitutes the critical functional alveolar-capillary interface of the human lung and exposes it to cyclic mechanical strain and fluid dynamic forces that mimic breathing and blood flow. This microdevice reproduces complex integrated organ-level responses to bacteria and inflammatory cytokines. Using this approach, we developed novel nanotoxicology models and revealed that physiological cyclic mechanical strain greatly accentuates toxic and inflammatory responses of the lung to silica nanoparticles. Mechanical strain also enhances nanoparticle uptake by the epithelial cells and stimulates their transport into the underlying microvasculature. Importantly, similar effects of physiological breathing on nanoparticle absorption were observed in whole mouse lung. We also explored the potential use of this microsystem for the development of microengineered models of human lung disease for applications in drug screening. This mechanically active biomimetic microsystem represents low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á21


À¯ÇÑ¿ä¼Ò Çؼ®À» ÀÌ¿ëÇÑ Ãß°£ÆÇ ÅðÇàÀÌ ¿äÃߺΠ»ýü¿ªÇп¡ ¹ÌÄ¡´Â ¿µÇ⠺м®

¹Ú¿ø¸¸¢Ó, ±èÀ±Çõ(°æÈñ´ëÇб³)

Keyword : Spine(ôÃß), Intervertebral disc degeneration(Ãß°£ÆÇ ÅðÇà), Biomechanics(»ýü°øÇÐ), Finite element analysis(À¯ÇÑ¿ä¼Ò Çؼ®)

Abstract : We analyzed the biomechanical effects of intervertebral (IVD) degeneration on the lumbar spine. Finite element models of the lumbar spine from L1 to the sacrum with various degrees of IVD degeneration at L4-L5 motion segment (MSU) were developed. IVD height and material properties of soft-tissues were varied to describe IVD degenerations. The bending moments simulating flexion, extension, lateral bending and axial rotation were applied on the superior plane of the L1 vertebra with the follower load of 500N, and the sacrum was fixed. The intersegmental rotations and intradiscal pressures (IDPs) at the degenerated MSU decreased with progression of IVD degeneration. The facet joint force decreased in extension, while the force increased in lateral bending and axial rotation at the degenerated MSU. IDPs at the adjacent MSUs increased in flexion by 26%-43%. Therefore IVD degeneration could lead IVD hernia at the adjacent MSUs and the facet joint arthrosis at the degenerated MSU.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á22


High efficient and low-cost polymeric nanofluidic system and its applications

±è¼ºÀç¢Ó,±è¿ø¼®, Á¶ÀÎÈñ, ³²¼º¹Î(¼­¿ï´ëÇб³), ±è¹üÁÖ, °í¼ºÈñ, ÇãÁؼº, °­°üÇü, ÀÓ±Ù¹è(Æ÷Ç×°ø´ë), ÇÑÁ¾À±(MIT)

Keyword : Nanofluidics, microfluidic, ion concentration polarization, ionic field effect transistor

Abstract : Despite of recent advances of MEMS and NEMS technology, we are still far from the commercialization of nanofluidic systems. In addition, proper operations with highly concentrated real sample such as raw blood and seawater should be guaranteed for practical applicability. In this presentation, nanofluidic systems with low cost material and fabrication method would be introduced. Off-the-shelf polymeric materials such as Nafion and polydimethyl-siloxane are employed as major building blocks for the system. The major function of the nanofluidic system is active ion control by an external electric field so that it is significantly useful to study the fundamental ion transportation through nanoporous junction(or membrane) and develop new engineering applications. As examples, ion/protein preconcentrator, ionic field effect transistor and high energy efficient desalination/purification system will be discussed. The presenting fabrication strategies and applications could eliminate the major huddles that blocks the nanofluidic research areas.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á23


ÃÊÁ¤¹Ð ·¹ÀÌÀú ³ª³ëÆÐÅÍ´× ±â¼úÀ» ÀÌ¿ëÇÑ ¼¼Æ÷ °Åµ¿ Á¦¾î

ÀüÈ£Á¤¢Ó(¼­¿ï°úÇбâ¼ú¿¬±¸¿ø)

Keyword : Nanopatterning(³ª³ëÆÐÅÍ´×), Haptotaxis(Á¢ÃËÁÖ¼º), Topography(Ç¥¸éÇü»ó), Cell migration(¼¼Æ÷°Åµ¿), Laser ablation(·¹ÀÌÀú ¾îºí·¹À̼Ç)

Abstract : Recent progress in developing techniques for micro/nano-fabrication of biomaterials helps recapitulate many extracellular matrix cues, making them progressively more useful for applications in biology and regenerative medicine. This talk presents a study of femtosecond laser assisted nanofabrication applicable for the biomaterials design aiming at achieving deliberate control of the cell behavior. We applied femtosecond laser induced multiphoton laser ablation lithography to fabricate precisely defined two-dimensional chemical and topographical patterned surface in nanometer to micrometer length scale to be used in studies addressing fundamental issues concerning control of cell adhesion, migration and stem cell differentiation.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á24


Protein detection on chip: microfluidic polyacrylamide gel electrophoresis and isotachophoresis

±èµµÇö¢Ó(¸íÁö´ëÇб³)

Keyword : microfluidics, electrophoresis, western blotting, microtas, lab on a chip, isotachophoresis, immunoassay, protein analysis, analytical chemistry

Abstract : Analysis of proteins can answer crucial biological and clinical questions spanning from study of tissue regeneration to diagnosis of cancers. In order to determine proteins in complex biological samples, high-resolution separation and specific target detection strategy are critical. Presently, protein detection relies on ELISA and Western blotting (WB), which have drawbacks of low throughput, large sample consumption, and manual operation. Microfluidic polyacrylamide gel electrophoresis (PAGE) recently showed high assay speed, miniscule sample consumption, and good resolving power with sensitivity on par with the macroscale counterpart. In this talk I present 1) microfluidic WB, a rapid automated PAGE integrated with immunoassay, and 2) polyacrylamide gel isotachophoresis, a protein enrichment and detection technique, as an innovative advance over the macroscopic analytical methods. In microfluidic WB, three assay steps are seamlessly integrated in a monolithic glass chip: PAGE separation, protein immobilization, and antibody-based protein detection. Assay performance is significantly improved over conventional WB assay: x10^2-10^3 reduced sample consumption (~10 ng), rapid completion times (~2 hours vs. 1-2 days), and automated assay procedure. Transient isotachophoresis through polymer sieving matrix (polyacrylamide gel) enables hundreds-fold sample enrichment of proteins and size-based separation, which would immensely improves detection sensitivity (signal-to-noise ratio) of low abundant proteins.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á25


White intense pulsed light sintering technology and its application for printed electronics

±èÇмº¢Ó(ÇѾç´ëÇб³)

Keyword : Printed electronics, White intense pulse light, nanomaterial, sintering

Abstract : In recent years, printed electronic technology has attracted lots of attentions in its applications such as flexible radio frequency identification (RFID) tags, wearable electronics, organic light emitting diodes, and organic solar cells. Therefore, many researchers pay more attention on the direct printing method because it does not require the additional etching and metal deposition processes. Key issue of printed electronics is in-situ, low temperature and large area sintering of metal/ceramic based nanoinks to realize the passive and active electronic components on low temperature flexible substrate with high speed for mass production. In this work, variety of conductive nanoinks such as silver, copper, nickel, hybrid Cu-Ag nanoparticles/precursor nanoink, could be successfully sintered and transformed to the conductive or semiconducting layer without damage of the substrate. We also introduce the research activities on the white intense pulsed light sintering application for semiconducting nanoparticles/precursor sintering and hybrid nanostructures fabrication which are being used for active devices, solar cells and the fuel cell, etc. It is expected that white intense pulsed light sintering technology would open new avenue for the printed electronics industry and high performace nanomaterials in a variety of the energy applications.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á26


Bacterial recognition of nanowire arrays

Á¤ÈÆÀÇ¢Ó(¿ï»ê°úÇбâ¼ú´ëÇб³)

Keyword : Bacteria(¹ÚÅ׸®¾Æ), Nano-bio interface(³ª³ë-¹ÙÀÌ¿ÀÀÎÅÍÆäÀ̽º), Nanowire(³ª³ë¿ÍÀ̾î)

Abstract : Understanding how living cells interact with nanostructures is integral to a better understanding of the fundamental principles of biology and the development of next-generation biomedical/bioenergy devices. Recent studies have demonstrated that mammalian cells can recognize nanoscale topographies and respond to these structures. From this perspective, there is a growing recognition that nanostructures, along with their specific physicochemical properties, can also be used to regulate the responses and motions of bacterial cells. Here, by utilizing a well-defined silicon nanowire array platform and single-cell imaging, we present direct evidence that Shewanella oneidensis MR-1 can recognize nanoscale structures and that their swimming patterns and initial attachment locations are strongly influenced by the presence of nanowires on a surface. Analyses of bacterial trajectories revealed that MR-1 cells exhibited a confined diffusion mode in the presence of nanowires and showed preferential attachment to the nanowires, whereas a superdiffusion mode was observed in the absence of nanowires. These results demonstrate that nanoscale topography can affect bacterial movement and attachment and play an important role during the early stages of biofilm formation.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á27


Stretchable Electronics Technologies For High Performance Devices

ÀÌÁ¾È£¢Ó(±¤ÁÖ°úÇбâ¼ú¿ø)

Keyword : Stretchable, Flexible Electronics, Photovoltaics, Solar Cells, Transfer-Printing, Printed Electronics

Abstract : A key advantage of geometrically structured substrates of stretchable electronics, is the ability to maintain high areal coverages in active devices such as photovoltaics. In the talk, we present an elaboration on the scheme that achieves the high degree of stretchability and areal coverage of stretchable electronics integrated with high performance inorganic devices. Epitaxially grown, single junction GaAs and dual junction GaInP/GaAs solar cells with microscale dimensions and ultrathin forms enable demonstrations in integrated stretchable photovoltaic modules with high power conversion efficiencies.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME À¯¸Á28


Molecular Mechanism of the Piezoelectricity of M13 Phages

À̺´¾ç¢Ó(°í·Á´ëÇб³)

Keyword : Piezoelectricity, Bacteriophage, Piezoresponse Force Microscopy, Energy Harvesting

Abstract : Fabrication of conventional piezoelectric ceramics often requires harmful materials, harsh conditions, or other complex procedures. Meanwhile, piezoelectricity of biomaterials such as bones and collagen fibers has been known for decades. However, their utilization as engineering materials has been limited, mainly due to the low level of piezoelectricity and the difficulty of controlling their molecular properties. Here, we report the piezoelectricity of biomaterials such as M13 bacteriophages (phages) and their electromechanical properties of their liquid crystalline structures. Piezoresponse force microscopy was utilized to investigate the molecular mechanism of their piezoelectricity. Charge distribution control of the proteins thorough genetic engineering results in piezoelectricity modulation of the individual phages. Furthermore, we show that control of their physical structure enhances their energy output level.

ÁöÁ¤¾÷ü ¼¼¼Ç ¾È³»

ÁöÁ¤¾÷ü ¼¼¼Ç [* Á¦¸ñ ¸íÀ» Ŭ¸¯ÇÏ¸é °­¿¬ ÃÊ·ÏÀ» º¸½Ç ¼ö ÀÖ½À´Ï´Ù]

¢º µÎ»êÁß°ø¾÷(ÁÖ)

ÀÌ ¸§

Á¦ ¸ñ

±èÇöÁß

CFD¸¦ ÀÌ¿ëÇÑ ¼öÁ÷Çü ¹ÌºÐ±â ³»ÀÇ °íü-±âü ´Ù»óÀ¯µ¿ Ư¼º¿¡ ´ëÇÑ ¿¬±¸

¾ç½ÂÇå

µÎ»ê 700MW±Þ È­·ÂÅͺó(3 Casing)ÀÇ ¼º°øÀû ¼³°è °ø±Þ

俵¼®

´ëÇü¹ßÀü±â °íÁ¤ÀÚ ±¸Á¶ ¹× ȸÀüÀÚ ¼³°è±â¼ú

¢º Çö´ëÁß°ø¾÷(ÁÖ)

ÀÌ ¸§

Á¦ ¸ñ

±Ç¿µ¹Î

¹èÅ͸®½Ä Àü±â±¼»è±â °³¹ß ÇöȲ

¹èÁ¾±¹

ģȯ°æ ¿£Áø°³¹ß µ¿Çâ

¹èÇÑÁø

½ºÇÁ·¹ÀÌ ÆÁÀÇ ¸¶¸ð¿¡ µû¸¥ µµ·á ºÐ»çƯ¼º ¿¬±¸

Á¤¸ù±Ô

¿ª»ïÅõ¸· ¹æ½Ä Çؼö´ã¼öÈ­ ¼³°è±â¼ú °³¹ß

¢º LGÀüÀÚ

ÀÌ ¸§

Á¦ ¸ñ

Áø½É¿ø

LG °¡Á¤¿ë¿¡¾îÄÁ(RAC)»ç¾÷ÀÇ ÁßÁ¡ R&D ¼Ò°³

¢º ¿À»óÀÚÀÌ¿¤

ÀÌ ¸§

Á¦ ¸ñ

À̼®¾ç

±â°è¼³°èÀÇ »õ Æз¯´ÙÀÓ CATIA V6 ¼Ò°³ ¹× Àû¿ë

¢º (ÁÖ)À¥½ºµ¥ÀÌŸ½Ã½ºÅÛ

ÀÌ ¸§

Á¦ ¸ñ

Á¤ÁØȸ

¼Ö¸®¿÷½º Education

°­¿¬ÃÊ·Ï

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤01


CFD¸¦ ÀÌ¿ëÇÑ ¼öÁ÷Çü ¹ÌºÐ±â ³»ÀÇ °íü-±âü ´Ù»óÀ¯µ¿ Ư¼º¿¡ ´ëÇÑ ¿¬±¸

±èÇöÁߢÓ, ÀÌä¼ö, ±è¿µ»ó(µÎ»êÁß°ø¾÷)

Abstract : º» ¿¬±¸¿¡¼­´Â °íüÀÔÀÚ-±âü ´Ù»óÀ¯µ¿ Çؼ®À» ÅëÇØ ¼®ÅºÈ­·Â¹ßÀü¿ë ¹ÌºÐ±â(Pulverizer) ³»ÀÇ ¹ÌºÐź(Pulverized coal) ÀÔÀÚÅ©±âº° ºÐÆ÷¿Í ¾Ð·Â°­ÇÏ·®À» ¿¹ÃøÇÏ¿´´Ù. Çؼ® ¹üÀ§´Â Ring duct, Louver ring, Dynamic classifier, Ãⱸ ÆÄÀÌÇÁ µîÀ» ¸ðµÎ Æ÷ÇÔÇÑ Full-scale ¼öÁ÷Çü ¹ÌºÐ±â Àüü·Î, ¹ÌºÐ±â ³»ºÎÀÇ ´Ù¾çÇÑ ±¸Á¶¹°ÀÌ ¾Ð·Â¼Õ½Ç¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Classifier¿¡ ÀÇÇÑ ÀÔÀÚ ºÐ¸® È¿À²µµ °è»êµÇ¾ú´Ù. Çؼ®°á°ú, ÇöÀç ¹ÌºÐ±â ¸ðµ¨ÀÌ 75§­(200 mesh) ÀÌ»óÀÇ ¹ÌºÐźÀ» È¿°úÀûÀ¸·Î ºÐ¸®ÇÏ°í ÀÖÀ¸¸ç ºÎÀ¯ ÀÔÀÚ¿¡ ÀÇÇÑ ¾Ð·Â¼Õ½ÇÀº ÁÖ·Î Louver ring Ãⱸ¿¡¼­ Roller »çÀÌ ¿µ¿ª¿¡¼­ ¹ß»ýÇÔÀ» È®ÀÎÇÏ¿´´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤02


µÎ»ê 700MW±Þ È­·ÂÅͺó(3 Casing)ÀÇ ¼º°øÀû ¼³°è °ø±Þ

¾ç½ÂÇå¢Ó, ½Å ÈÆ, ±èµæÇÑ(µÎ»êÁß°ø¾÷)

Abstract : µ¿³²¾Æ±Ç ±¹°¡µéÀÇ Àü±â/Àü·Â ¼ö¿ä Áõ°¡¿¡ µû¶ó ű¹ ¹× Àεµ³×½Ã¾Æ¿¡ ´ë¿ë·®ÀÇ 700MW±Þ È­·Â¹ßÀü EPC °ø»ç°¡ ÃßÁøµÇ¾ú°í, º» EPC °ø»ç¿¡ ±¹°¡ ÃÖÃÊ·Î ½Å±Ô(New) Åͺó/¹ßÀü±â¸¦ µ¶ÀÚ ¼³°è/°ø±ÞÇÏ¿´´Ù. ƯÈ÷ º» EPC °ø»ç¿¡´Â °Ç¼³ ºñ¿ë Àý°¨À» ÅëÇÑ ¼±Áø±â¼ú»ç¿ÍÀÇ °æÀï ¿ìÀ§ È®º¸¸¦ À§ÇØ 700MW±Þ ´ëÇü ÅͺóÀÓ¿¡µµ ºÒ±¸ÇÏ°í 4 ÄÉÀ̽Ì(°í¾ÐÅͺó-Áß¾ÐÅͺó-Àú¾ÐÅͺóA- Àú¾ÐÅͺóB)ÀÌ ¾Æ´Ñ 3 ÄÉÀ̽Ì(°í/Áß¾ÐÅͺó-Àú¾ÐÅͺóA-Àú¾ÐÅͺóB)À¸·Î ¼³°èÇÏ¿´À½¿¡µµ ºÒ±¸ÇÏ°í ½Ã¿îÀü Áß ´Ü 1°ÇÀÇ ¹®Á¦Á¡µµ ¾øÀÌ ¼º°øÀûÀ¸·Î ½Ã¿îÀüÀ» ¿Ï·áÇÏ°í »ó¾÷¿îÀüÀ» Âø¼öÇÏ¿´´Ù. º» ¹ßÇ¥¿¡¼­´Â »ó±â ÅͺóÀÇ ÁÖ¿ä ¼³°è ±â¼ú, ¼³°è °ËÁõ, ½Ã¿îÀü °á°ú¸¦ Á¦½ÃÇÔÀ¸·Î½á ±¹°¡ ÃÖÃÊ·Î µ¶ÀÚ ¼³°è/°ø±ÞÇÑ ±¹»ê ÅͺóÀÇ ±â¼úÀû ÀÇÀǸ¦ °íÂûÄÚÀÚ ÇÑ´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤03


´ëÇü¹ßÀü±â °íÁ¤ÀÚ ±¸Á¶ ¹× ȸÀüÀÚ ¼³°è±â¼ú

俵¼®¢Ó, ±è¼ºÁ¾, À̼ºÇÑ(µÎ»êÁß°ø¾÷)

Abstract : µÎ»êÁß°ø¾÷Àº Áö³­ 50³â°£ÀÇ ¹ßÀü ±âÀÚÀç ¼³°è ¹× Á¦ÀÛ ±â¼úÀ» Åä´ë·Î ±¹³»¿Ü ¹ßÀü Ç÷£Æ® ½ÃÀåÀ» ¼±µµÇÏ°í ÀÖ´Ù. ƯÈ÷, µÎ»ê¹ßÀü±â´Â ±¹³» È­·Â, ¿øÀÚ·Â ¹ßÀü Ç÷£Æ®¿Í ±¹¿Ü È­·Â ¹ßÀüÇ÷£Æ®¿¡ 90È£±â ÀÌ»óÀÇ ½Å±Ô°ø±Þ°ú 7È£±â ÀÌ»óÀÇ ¼º´É °³¼± °ø»ç ¼öÇà ½ÇÀûÀ» º¸À¯ÇÏ°í ÀÖÀ¸¸ç, 60GWÀÌ»óÀÇ »ó¾÷¿îÀüÀ» ÅëÇÏ¿© ¾ÈÀü¼ºÀ» ÀÔÁõÇÏ°í ½Å·Ú¼ºÀ» È®º¸ÇÏ¿´´Ù. µÎ»ê¹ßÀü±â´Â µ¶ÀÚÀûÀÎ ¼³°è ±â¼úÀ» Åä´ë·Î ´Ù¾çÇÑ ¸ðµ¨À» ±¸ÃàÇÏ°í ½ÃÀå¿¡¼­ ¿ä±¸ÇÏ´Â ÃÖÀûÈ­µÈ ¹ßÀü±â¸¦ °³¹ß ÇØ ³ª°¡°í ÀÖÀ¸¸ç, ¼¼°èÀû ¼öÁØÀ¸·Î ±¸ÃàµÈ ¼º´É½ÃÇè °øÀå¿¡¼­ ½ÇÁõ ½ÃÇèÀ» ÅëÇØ ¼º´É ¹× ±¸Á¶Àû ¾ÈÀü¼ºÀ» °ËÁõÇÔÀ¸·Î½á ¸ðµ¨ ½Å·Ú¼ºÀ» È®°íÈ÷ ÇÏ°í ÀÖ´Ù. º» ¹ßÇ¥¿¡¼­´Â ¹ßÀü Ç÷£Æ® ¼öÇà °æÇèÀ» ÅëÇÏ¿© ÃàôÇØ¿Â µÎ»ê¹ßÀü±âÀÇ °íÁ¤ÀÚ ±¸Á¶ ¹× ȸÀüÀÚ ¼³°è ±â¼ú¿¡ °üÇÏ¿© ¼Ò°³ ÇÑ´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤04


¹èÅ͸®½Ä Àü±â±¼»è±â °³¹ß ÇöȲ

±Ç¿µ¹Î¢Ó, ÀÌ»óÈÆ, ¹ÚÁø¼ö(Çö´ëÁß°ø¾÷(ÁÖ) °Ç¼³Àåºñ¿¬±¸¼Ò)

Abstract : ¹èÅ͸®½Ä Àü±â±¼»è±â(ÀÌÇÏ Àü±â±¼»è±â)´Â ȹ±âÀûÀÎ ¿¡³ÊÁö ºñ¿ë Àú°¨°ú Zero-EmissionÀ» ½ÇÇöÇϱâ À§ÇØ ±âÁ¸ ±¼»è±âÀÇ µ¿·Â¿øÀÎ µðÁ© ¿£ÁøÀ» ´ë¿ë·® ¹èÅ͸®¿Í Àüµ¿±â·Î ´ëüÇÑ °Ç¼³ÀåºñÀÌ´Ù.
Àü±â±¼»è±â´Â À¯°¡ »ó½Â°ú ȯ°æ ±ÔÁ¦ °­È­¿¡ µû¶ó ÃÖ±Ù ¿¬±¸ °³¹ßÀÌ ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖÀ¸¸ç, ƯÈ÷ Àü±âÀÚµ¿Â÷ ¹× Àü±âÀ¯¾Ð ºÐ¾ß ±â¼ú ¹ßÀüÀ¸·Î ÇٽɺÎÇ°ÀÇ ½Å·Ú¼º ¹× °æÁ¦¼ºÀÌ ±Þ°ÝÈ÷ Çâ»óµÇ¾î ½Ç¿ëÈ­°¡ ¾Õ´ç°Ü Áú °ÍÀ¸·Î ¿¹ÃøµÈ´Ù.
º» ³í¹®¿¡¼­´Â Àü±â±¼»è±â ÇٽɺÎÇ° °³¹ß µ¿Çâ°ú ÇØ¿Ü °Ç¼³Àåºñ Á¦Á¶»çÀÇ 7Åæ ÀÌÇÏ ¼ÒÇü±Þ Àü±â±¼»è±â °³¹ß »ç·Ê¸¦ ¼Ò°³ÇÏ°í, ±¹³»¿¡¼­ ¼¼°è ÃÖÃÊ·Î °³¹ß ÁßÀÎ ÁßÇü±Þ Àü±â±¼»è±â °³¹ß ÇöȲÀ» ¼³¸íÇÏ°íÀÚ ÇÑ´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤05


ģȯ°æ ¿£Áø°³¹ß µ¿Çâ

¹èÁ¾±¹¢Ó, ±è±âµÎ, ÀÌ¿ë¼®(Çö´ëÁß°ø¾÷(ÁÖ))

Abstract : ±¹Á¦ÇØ»ç±â±¸(IMO) ¹× ¹Ì±¹È¯°æº¸È£Ã»(EPA) µîÀº Áö¼ÓÀûÀ¸·Î ¿£ÁøÀÇ À¯ÇØ ¹è±â°¡½º ¹èÃâ ±ÔÁ¦¸¦ °­È­ÇÏ°í ÀÖ´Ù. ¼±¹Ú ¹× À°»ó ¹ßÀü¿ë ¿£ÁøÀº °¡°ÝÀÌ Àú·ÅÇÑ ÁßÀ¯¸¦ »ç¿ëÇÏ´Â µðÁ©¿£ÁøÀÌ ÁÖ·ù¸¦ ÀÌ·ç°í ÀÖ¾î NOx, Smoke ¹× SOx µîÀÇ À¯ÇØ ¹è±â°¡½º ¹èÃâÀ» ÁÙ¿©¾ß Çϸç À̸¦ À§ÇØ EGR, SCR, DPF ¹× ½ºÅ©·¯¹ö¿Í °°Àº ±â¼úÀÇ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ´Ù. ÃÖ±Ù¿¡´Â õ¿¬°¡½º¸¦ ÀÌ¿ëÇÑ °¡½º¿£Áø °³¹ßÀÌ Áõ´ëÇÏ°í ÀÖÀ¸¸ç ÀÌ´Â º°µµÀÇ ºÎ°¡ÀåÄ¡¸¦ žÀçÇÏÁö ¾Ê°í NOx, Smoke ¹× SOx µîÀÇ ¹è±â°¡½º ¿À¿°¹°À» ÇöÀúÈ÷ ÁÙ¿© ±¹Á¦ÇØ»ç±â±¸ÀÇ Tier 3 ±ÔÁ¦¸¦ ¸¸Á·ÇÒ ¼ö ÀÖ´Ù. ¶ÇÇÑ Ãµ¿¬°¡½º¿Í ÁßÀ¯¸¦ º¯È¯ÇÏ¿© ¿îÀüÀÌ °¡´ÉÇÑ ÀÌÁß¿¬·á ¿£ÁøÀÇ °³¹ßµµ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù. ģȯ°æ/°íÈ¿À² °¡½º ¹× ÀÌÁß¿¬·á ¿£Áø °³¹ßÀ» À§Çؼ­´Â °ø¿¬ºñ Á¦¾î¸¦ ÅëÇÑ Èñ¹Ú ¿¬¼Ò ±¸Çö, ¹Ð·¯»çÀÌŬ °­È­, Á¡È­¸¦ ÃËÁøÇϱâ À§ÇÑ ¿¹È¥ÇÕ¿¬¼Ò½Ç, ¿¬¼Ò¼Óµµ¸¦ ³ôÀ̱â À§ÇÑ ½º¿ùÇü ÇìµåÆ÷Æ®, °¡½º ¿¬¼Ò¿¡ ÃÖÀûÈ­µÈ ÇǽºÅæ ¹Ù¿ï Çü»ó µîÀÇ ±â¼ú °³¹ßÀÌ Áß¿äÇÏ´Ù.
Çö´ëÁß°ø¾÷¿¡¼­´Â ±¹³» ÃÖÃÊ·Î Èû¼¾ H35/40G °¡½º¿£ÁøÀ» °³¹ßÇÏ¿´À¸¸ç ÃÖ´ë 1¸¸ 3000¸¶·Â±îÁö Ãâ·ÂÀ» ³¾ ¼ö ÀÖ´Ù. ÀÌ´Â µðÁ©¿£Áøº¸´Ù ÀÌ»êȭź¼Ò(CO2) ¹èÃâ·®À» 20% ÀÌ»ó ÁÙÀÌ°í NOx ¹èÃâ·®À» 97% ÀÌ»ó Àú°¨½ÃŲ 50ppmÀ» ½ÇÇöÇßÀ¸¸ç, ¿£Áø È¿À²µµ 47%·Î ³ôÀº °æÀï·ÂÀ» °®Ãß¾ú´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤06


½ºÇÁ·¹ÀÌ ÆÁÀÇ ¸¶¸ð¿¡ µû¸¥ µµ·á ºÐ»çƯ¼º ¿¬±¸

¹èÇÑÁø¢Ó, ÀÌÀ±½Ä, ÃֹαÔ, À±¸é½Ä, À̼º±Õ(Çö´ëÁß°ø¾÷ Áß¾Ó±â¼ú¿ø µµÀ忬±¸½Ç)

Abstract : µµ·áÀÇ ºÐ»ç ÆÐÅÏ°ú À¯·®À» Á¦¾îÇÏ´Â ½ºÇÁ·¹ÀÌ ÆÁÀº »ç¿ë½Ã°£¿¡ µû¸¥ ¸¶¸ð¿¡ ÀÇÇØ ³ëÁñ Àü´Ü¿¡¼­ÀÇ ¾Ð·Â, ºÐ»çÆÐÅÏ ¹× À¯·® µîÀ» º¯È­½ÃÄÑ µµÀå »ý»ê¼º°ú µµ·áÀÇ ¼Ò¸ð·®¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡¹Ç·Î ÆÁÀÇ ¸¶¸ð¿¡ µû¸¥ µµ·áÀÇ ºÐ»ç Ư¼º Æľǰú ÆÁÀÇ ÀûÁ¤ ±³Ã¼Áֱ⠼±Á¤Àº ¹«¾ùº¸´Ù Áß¿äÇÏ´Ù.
º» ¿¬±¸¿¡¼­´Â ÆÁÀÇ ¸¶¸ð ¼Óµµ¸¦ Áö¹èÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁø ¡°ºÐ»ç¾Ð·Â ¹× ½Ã°£, µµ·á Ò® ¸¶¸ð¼ººÐÀÇ Á¾·ù ¹× ÇÔ·®, ÆÁÀÇ Çü»ó ¹× ÀçÁú¡±µîÀÇ ¿µÇâÀÎÀÚµé°ú µµ·áÀÇ ºÐ»çƯ¼º°£ÀÇ »ó°ü°ü°è¸¦ µµÃâÇÏ¿´´Ù. ´Ù¾çÇÑ µµÀåÀÛ¾÷Á¶°Ç¿¡¼­ÀÇ ÆÁÀÇ ¸¶¸ð Çö»óÀ» °¡¼Ó ¸ð»çÇÒ ¼ö ÀÖ´Â ¿¬¼Ó ¼øȯ½Ä ÆÁ ¸¶¸ð½ÃÇèÀåÄ¡¿Í ½ÇÁ¦ ÇöÀå Å×½ºÆ®·ÎºÎÅÍ ¾ò¾îÁø Æò°¡ °á°úºÎÅÍ ÆÁÀÇ ¸¶¸ð°¡ ÁøÇàµÊ¿¡ µû¶ó ºÐ»çÀ¯·®Àº Áõ°¡ÇÏ´Â ¹Ý¸é ºÐ»ç ÆøÀº Á¡Â÷ °¨¼ÒÇÏ´Â °ÍÀ¸·Î È®ÀεǾú´Ù. ¶ÇÇÑ, µ¿ÀÏÇÑ ÀÛ¾÷Á¶°Ç¿¡¼­ ½ºÇÁ·¹ÀÌ ÆÁÀÇ ¼ö¸íÀº ¿À¸®ÇǽºÀÇ Çü»ó(À̽ÉÀ²)¿¡ ÀÇÇØ °áÁ¤µÇ¸ç, ³ëÁñÀÇ °æµµ°¡ ÀÏÁ¤ ¼öÁØ ÀÌ»óÀÎ °æ¿ì ÆÁÀÇ ¼ö¸í¿¡ ¹ÌÄ¡´Â ¿µÇâÀº ¹Ì¹ÌÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤07


¿ª»ïÅõ¸· ¹æ½Ä Çؼö´ã¼öÈ­ ¼³°è±â¼ú °³¹ß

Á¤¸ù±Ô¢Ó, ¼Ò¿ë½Å, ¿ÀÈ£¿µ, ¹Ú»óö, ±è¹ÌÁø(Çö´ëÁß°ø¾÷ Áß¾Ó±â¼ú¿ø ȯ°æ¿¬±¸½Ç)

Abstract : ´ã¼öÈ­ ±â¼úÀº ¹°¿¡¼­ ¿°ºÐ ¹× À¯ÇØ ¹°ÁúÀ» Á¦°ÅÇÏ´Â °øÁ¤À¸·Î Çؼö(Seawater)¿Í ±â¼ö(Brackish)¿¡¼­ ´ã¼ö(Freshwater)·Î º¯È¯ ½ÃÅ°´Â ±â¼ú·Î ¹° ºÎÁ·Çö»óÀ» ÇØ°áÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ¼ö´ÜÀ̶ó ÇÒ ¼ö ÀÖ´Ù. ±×¸®°í ÇؼöÀÇ °æ¿ì Áö±¸»ó ¹°ÀÇ 97%·Î¼­ ¹«±Ã¹«ÁøÇÑ ¼öÀÚ¿øÀ¸·Î¼­ À̸¦ ÀÌ¿ëÇÑ Çؼö´ã¼öÈ­ ±â¼úÀº È¿¿ëÀÇ °¡Ä¡°¡ ¸Å¿ì Å©´Ù°í ÇÒ ¼ö ÀÖ´Ù.
Çؼö ´ã¼öÈ­ Ç÷£Æ®´Â Å©°Ô ¿­À» ÀÌ¿ëÇÏ´Â Áõ¹ß½Ä°ú ¾Ð·ÂÀ» ÀÌ¿ëÇÏ´Â ¿ª»ïÅõ¸· ¹æ½ÄÀ¸·Î ´ëÇ¥µÈ´Ù. ƯÈ÷ ÃÖ±Ù ±Þ¼ÓÈ÷ ¼ºÀåÇÏ°í ÀÖ´Â ¿ª»ïÅõ¸·(RO : Revers Osmosis) ¹æ½ÄÀº ¾Ð·Â ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© Çؼö¸¦ ¸·(Membrane)¿¡ Åë°ú½ÃÅ´À¸·Î½á ´ã¼ö¸¸À» ºÐ¸®Çس»´Â °ø¹ýÀ¸·Î Çؼö Áß ¿°ºÐÀÎ À̿¼º ¹°ÁúÀÌ °ÅÀÇ ¹èÁ¦µÈ ¼ø¼öÇÑ ¹°À» ¾òÀ» ¼ö ÀÖ´Ù. ±×·¯³ª ¿ª»ïÅõ¸· ¹æ½Ä Çؼö´ã¼öÈ­ °øÁ¤Àº ¿ª»ïÅõ¸·ÀÇ ¼ö¸íº¸Àå°ú ¾ÈÁ¤Àû ¿îÀüÀ» À§ÇÑ Àüó¸®, »ý»êµÈ ´ã¼ö¿¡ ´ëÇÏ¿© À½¿ë¼ö ¼öÁú±âÁØ ¸¸Á·À» À§ÇÑ ÈÄó¸® °øÁ¤ÀÌ Æ÷ÇԵǹǷΠ°£´ÜÇÑ ÇϳªÀÇ ´ÜÀÏ °øÁ¤À¸·Î ÀÌ·ç¾î ÁöÁö ¾Ê´Â´Ù. ¶ÇÇÑ Çؼö´ã¼öÈ­ ±â¼úÀÇ °æÁ¦¼ºÀº ´ã¼öÀÇ »ý»ê±Ô¸ð, ½Ã¼³ÀÇ ÀÔÁöÁ¶°Ç, ¿ø¼öÀÇ ¼öÁú ±×¸®°í »ý»êµÈ ´ã¼öÀÇ ¿ä±¸³óµµ¿¡ µû¶ó Å©°Ô ´Þ¶óÁø´Ù°í ÇÒ ¼ö ÀÖ´Ù. ¿ª»ïÅõ¸· ¹æ½Ä Çؼö´ã¼öÈ­ ¼³ºñÀÇ ¼º°øÀû ¼³Ä¡ ¹× ¿î¿µÀ» À§Çؼ­´Â À¯ÀÔ¼ö ¼öÁú¿¡ ÀûÀýÀÌ ´ëÀÀÇÒ ¼ö ÀÖ´Â Àüó¸® °øÁ¤ÀÇ ¼³°è¿Í ÃÖÀûÀÇ ¿ª»ïÅõ¸· ¼±Á¤ ¹× È¿À²Àû ¿î¿µÀ» À§ÇÑ Á¦¾î ¹æ¹ý¿¡ ´ëÇÑ ¼³°è±â¼úÀÇ È®¸³ÀÌ ÇʼöÀûÀ̶ó ÇÒ ¼ö ÀÖ´Ù.
µû¶ó¼­ Çؼö´ã¼öÈ­ Ç÷£Æ® ±â¼úÀº Åä¸ñ°Ç¼³, ȯ°æ, È­ÇаøÇÐ, ±â°è, ¼ÒÀç µîÀÇ Àü¹Ý¿¡ °üÇÑ Á¾ÇÕÀû ±â¼úÀ̶ó ÇÒ ¼ö ÀÖÀ¸¸ç ¿¡³ÊÁö ¼Ò¿ä µî¿¡ ¸Å¿ì ¹Î°¨ÇÑ ±â¼ú·Î¼­ Çؼö´ã¼öÈ­ ´ÜÀ§ °øÁ¤ÀÇ Á¤È®ÇÑ ÀÌÇØ ±×¸®°í ´ã¼ö »ý»ê·® ¹× ¸ñÇ¥¼öÁú ´Þ¼ºÀ» À§ÇÑ ´ÜÀ§°øÁ¤ ¼±Á¤°ú È¿À²Àû ¼³°è°¡ ¸Å¿ì Áß¿äÇÏ´Ù°í ÇÒ ¼ö ÀÖ´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤08


LG °¡Á¤¿ë¿¡¾îÄÁ(RAC)»ç¾÷ÀÇ ÁßÁ¡ R&D ¼Ò°³

Áø½É¿ø¢Ó(LGÀüÀÚ RAC¿¬±¸¼ÒÀå)

Abstract : LGÀüÀÚ´Â 1968³â ±¹³» ÃÖÃÊ·Î ¿¡¾îÄÁ <GA-111>À» »ý»êÇϱ⠽ÃÀÛÇϸ鼭, ¼¼°è ÃÖ°íÀÇ ¿¡¾îÄÁ ¸ÞÀÌÄ¿·Î¼­ ÀÚ¸®¸Å±è ÇÏ°í ÀÖ½À´Ï´Ù.
ƯÈ÷, LGÀüÀÚÀÇ °¡Á¤¿ë ¿¡¾îÄÁÀº Â÷º°È­µÈ ±â¼úÀ» ¹ÙÅÁÀ¸·Î Áö¼ÓÀûÀÎ Çõ½ÅÀ» ÀÌ·ç¾î ¿Ô½À´Ï´Ù. 2008³â¿¡´Â 6ÀÎ ÀÛ°¡ ¾ÆÆ® ÄÁ¼ÁÀÇ ½Å°³³ä Á¦Ç°ÀÎ ¾ÆÆ®ÄðÀ» Ãâ½ÃÇÏ¿´°í, 2010³â ÈÞ¸ÕÄÉ¾î ·Îº¿À» žÀçÇÔ¿¡ À̾î, 2012³â¿¡´Â ¼¼°èÃÖÃÊ ¸®¾ó 4D ÀÔü³Ã¹æ Á¦Ç°À» Ãâ½ÃÇÏ¿© ¾÷°è ÃÖ°íÈ¿À²À» ´Þ¼ºÇÏ¿´½À´Ï´Ù.
ÀÌ¿¡ ¾ÈÁÖÇÏÁö ¾Ê°í ÇÏÀ̺긮µå ¿­±³È¯±â, ½´ÆÛ ÀιöÅÍ ÀýÀü±â¼ú, ¿¹¼úÀû µðÀÚÀÎ µî °íÁ¤°ü³äÀ» ±ú´Â Çõ½ÅÀûÀÎ Á¦Ç°À¸·Î ¾÷°è Æ®·£µå¸¦ ¼±µµÇÏ°í ÀÖ½À´Ï´Ù.
¸ÕÀú, ³ª³¯ÀÌ °­ÇØÁö´Â ¿¡³ÊÁö ±ÔÁ¦¿Í ¼ö±Þ ºÒ±ÕÇüÀ¸·Î ÀÎÇÑ Àü±â·á ÀλóÀ¸·Î ÀÎÇØ LGÀüÀÚ´Â ÃÊÀýÀü ¿¡¾îÄÁÀ» °í°´µé¿¡°Ô Á¦°øÇÏ°íÀÚ ÇÕ´Ï´Ù.
À̸¦ À§Çؼ­ ¾ÐÃà±â, ÀιöÅÍ ÄÁÆ®·Ñ·¯, ¿­±³È¯±â µî ÇÙ½É ¿ä¼Ò ±â¼úÀÇ °íÈ¿À²È­ ¹× ½Ã½ºÅÛ ÃÖÀûÈ­ ¼³°è¸¦ ÅëÇØ ÃÖ°íÈ¿À² ÀιöÅÍ ¿¡¾îÄÁÀ» °³¹ßÇÏ°í ÀÖ½À´Ï´Ù.
±×¸®°í, Áß±¹¾÷üµé°úÀÇ °æÀïÀ» À§Çؼ­ ºÎÇ° µ¿´ëü¸¦ ÅëÇÑ °¡°Ý°æÀï·ÂÀ» È®º¸ÇÏ°í ÀÖÀ¸¸ç, ÀÌ´Â ´Ü¼øÈ÷ Àç·áºñ¸¦ ³·Ãß´Â °ÍÀÌ ¾Æ´Ñ Á¦Ç°ÀÇ ½Å·Ú¼ºÀ» °í·ÁÇÏ´Â ±¸Á¶¼³°è ±â¼ú·Î Áö¼Ó È®º¸ÇÏ°í ÀÖ½À´Ï´Ù.
¸¶Áö¸·À¸·Î, ½ÃÀåÀ» È®´ëÇϱâ À§Çؼ­ ÇÑ·©Áö / ¿Â³­Áö¿ª¿¡¼­µµ ³ôÀº ³Ã³­¹æ ´É·ÂÀ» ±¸ÇöÇÒ ¼ö ÀÖ´Â Cycle ¼³°è±â¼úÀ» °³¹ßÇÏ°í ÀÖÀ¸¸ç, ÄèÀûÇÏ°í ¾È¶ôÇÑ È¯°æÁ¦°øÀ» À§ÇÑ Á¦±Õ / °¡½À - Á¦½À / ¼¾¼­ ±â¼úÀ» È®º¸ÇÏ¿© ÄèÀû°øÁ¶½Ã½ºÅÛÀ» Á¦°øÇÏ°íÀÚ ÇÕ´Ï´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤09


±â°è¼³°èÀÇ »õ Æз¯´ÙÀÓ CATIA V6 ¼Ò°³ ¹× Àû¿ë

À̼®¾ç¢Ó(¿À»óÀÚÀÌ¿¤)

Abstract : CV6´Â Global Collaborative Innovation, Lifelike Experience, Single PLM Platform For mana-gement, Online Creation and Collaboration, Ready to Use PLM Business Processes, Lower Cost of ownership µî 6°³ÀÇ Value¸¦ °®Ãß°í ÀÖÀ¸¸ç, °¢°¢ÀÇ Value ¸¶´Ù ÇÔÃàµÈ Àǹ̸¦ °¡Áö°í ÀÖ´Ù.
Çù¾÷±â¹ÝÀÇ ±Û·Î¹ú ȯ°æÀ¸·Î 3Dµ¥ÀÌÅÍ¿Í Ä¿¹Â´ÏƼ¸¦ ÅëÇÑ Çù¾÷, »ç¿ëÀÚ°¡ ½ÇÁ¦Á¦Ç°À» ´À³¢´Â°Í°ú °°Àº °æÇèÀ¸·Î Á÷°üÀûÀÎ ÀÎÅÍÆäÀ̽º¿Í ½Ç½Ã°£ ·»´õ¸µ, ´ÜÀÏ PLM Ç÷§Æû ±â¹ÝÀ¸·Î V6¸¦ ÅëÇÑ µ¿ÀÏ µ¥ÀÌÅÍÀÇ È°¿ëÀ¸·Î ´ÜÀÏÈ­µÈ ÁöÀûÀÚ»êÀ» °øÀ¯ÇÒ ¼ö ÀÖÀ¸¸ç,À¥±â¹ÝÀÇ ¾÷¹«·Î ÀÎÇØ ¿ø°Å¸®¿¡ ÀÖ´Â ÀÛ¾÷ÀÚ¿Í ½Ç½Ã°£À¸·Î µ¿½Ã ÀÛ¾÷ ¼öÇàÀÌ °¡´ÉÇϸç,»ê¾÷±ºº°·Î ƯȭµÈ ºñÁî´Ï½º ÇÁ·Î¼¼½º¸¦ Á¦°øÇÔÀ¸·Î½á ¿£Áö´Ï¾î¸µ ÇÁ·Î¼¼½º¿Í ÅëÇÕÀÌ È®ÀåÀÌ ¿ëÀÌ ÇÏ´Ù. ¶ÇÇÑ ÃÖ¼Ò ¼ÒÀ¯ºñ¿ëÀ¸·Î ÅëÇÕȯ°æ¿¡ ´ëÇØ ±¸Ãà,°ü¸®,È®ÀåÀÌ º¸´Ù È¿À²ÀûÀÌ´Ù. CV6´Â CATIA V5¿Í ´Þ¸® µ¥ÀÌÅÍ º£À̽º ±â¹ÝÀ¸·Î ±¸µ¿µÇ±â ¶§¹®¿¡ º¸´Ù ³ªÀº Åõ¸í¼º º¸Àå, ¸ðµç »ç¿ëÀÚ°¡ µ¿ÀÏÇÑ µ¥ÀÌÅÍ º£À̽º¿¡ Á¢¼ÓÇØ¾ß Çϱ⠶§¹®¿¡ ´Ü¼øÈ­µÈ Çù¾÷ ÇÁ·Î¼¼½º, µ¥ÀÌÅÍ º£À̽º¿¡ ÀúÀåµÈ ¸ðµç Á¤º¸¸¦ º¸´Ù È¿À²ÀûÀ¸·Î Æí¸®ÇÏ°Ô Å½»öÇÒ ¼ö ÀÖÀ»»Ó¸¸ ¾Æ´Ï¶ó. µ¥ÀÌÅÍ º£À̽º ³»ÀÇ µ¿ÀÏÇÑ Á¦Ç° ±¸Á¶¸¦ µ¿ÀÏ ½Ã°£¿¡ Á¢¼ÓÇÏ¿© ÀÛ¾÷À» ÇÒ ¼ö ÀÖÀ¸¹Ç·Î µ¿½Ã °øÇÐÀÌ °¡´ÉÇÏ´Ù.
À̷νá CV6´Â ±âÁ¸ÀÇ V5º¸´Ù ´õ¿í´õ °­·ÂÇÑ ±â´ÉÀ» Á¦°øÇÏ°í »ç¿ëÀÚµéÀÇ ¾÷¹«, Çù¾÷ÀÇ È¿À²¼ºÀ» ³ôÀ̸ç,´Ü¼ø ¾îÇø®Ä³À̼ÇÀÌ ¾Æ´Ñ, »ç¿ëÀÚµéÀÇ ¾÷¹« ȯ°æ,ÇÁ·Î¼¼½º,Ä¿¹Â´ÏƼ µîµî.. ¾÷¹«¿¡ °üÇÑ ¸ðµç ºÎºÐÀ» °ü¸®,±¸Ãà ÇØÁÖ´Â ÅëÇÕÀûÀÎ ¾îÇø®ÄÉÀ̼ÇÀÌ´Ù.

´ëÇѱâ°èÇÐȸ 2012³âµµ Ãß°èÇмú´ëȸ °­¿¬ ¹× ³í¹® ÃÊ·ÏÁý

KSME ÁöÁ¤10


¼Ö¸®µå¿÷½º Education

Á¤ÁØȸ¢Ó(À¥½ºµ¥ÀÌŸ½Ã½ºÅÛ)

Abstract : ¼Ö¸®µå¿÷½º ´Ü¼øÇÑ 3Â÷¿ø CADÅøÀÌ ¾Æ´Õ´Ï´Ù. ¼Ö¸®µå¿÷½º´Â ¼³°è ÀÚµ¿È­¸¦ ½ÇÇöÇÏ´Â ¼ÒÇÁÆ®¿þ¾îÀÔ´Ï´Ù. »ç¿ëÀÚ´Â ¾ÆÀ̵ð¾î¸¦ ½ºÄÉÄ¡ÇÏ°í ´Ù¾çÇÑ µðÀÚÀÎÀ» ÄÄÇ»Åͻ󿡼­ ±¸ÇöÇÏ°í ½ÇÇö °¡´É¼ºÀ» °ËÁõÇÒ ¼ö ÀÖ½À´Ï´Ù. »ç¿ëÀÚÀÇ ¾ÆÀ̵ð¾î¸¦ ±¸ÇöÇϱâ À§ÇÏ¿© ¼Ö¸®µå¿÷½º´Â ´Ù¾çÇÑ ¼³°èÅøÀ» Á¦°øÇÕ´Ï´Ù. 3Â÷¿ø ¼³°è ÇÁ·Î±×·¥ÀÎ SolidWorks, ±¸Á¶Çؼ®À» À§ÇÑ SolidWorks Simulation(Static,Thermal, Frequency, Fatigue, Nonlinear Dynamics, Composites), ¿­À¯µ¿ Çؼ®À» À§ÇÑ SolidWorks Flow Simulation, ¸ð¼ÇÇؼ®À» À§ÇÑ SolidWorks Motion(Adams Solver), Á¦Ç°ÀÇ È¯°æ¼º Æò°¡¸¦ À§ÇÑ SolidWorks Sustainability µî »ç¿ëÀÚ°¡ Á¦Ç° ¼³°è¿¡ ÇÊ¿äÇÑ ¸ðµç ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù.  »ó¿ë »ç¿ëÀÚ ±âÁØÀ¸·Î 160¸¸ Copy ÀÌ»óÀÌ WordwideÇÏ°Ô »ç¿ëµÇ°í, 6¸¸°³ ÀÌ»óÀÇ Æ÷·³È¸¿ø, 725°³ ÀÌ»óÀÇ Solution ÆÄÆ®³Ê°¡ ¼Ö¸®µå¿÷½º ±â¹ÝÀÇ Ãß°¡ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù.
 Àü¼¼°èÀ¸·Î 2¸¸4000°³ ±³À°½Ã¼³¿¡¼­ ¸Å³â 100¸¸¸íÀÌ»óÀÇ ¼Ö¸®µå¿÷½º »ç¿ëÀÚ°¡ ¹èÃâµÇ°í ÀÖ½À´Ï´Ù. 
 ¼¼°è Top 200À§ Àü¹®Çаú ´ëÇб³¸¦ ±âÁØÀ¸·Î (Times Highter Education¹ßÇ¥_http://www.thes.co.uk/worldrankings)Àü¼¼°è ±âÁØ 200À§ Çб³ Áß 173°³±³(87%), ¾Æ½Ã¾Æ/ÅÂÆò¾ç Áö¿ª 23À§ ´ëÇÐ(¼¼°è 200À§ ¾È¿¡ ÁøÀÔÇÑ Çб³)Áß 19°³±³(83%)°¡ ¼Ö¸®µå¿÷½º¸¦ »ç¿ëÇÕ´Ï´Ù. 200°³ ´ëÇп¡ Æ÷ÇÔµÈ ÀϺ»ÀÇ 6°³ ´ëÇÐ ¸ðµÎ´Â 100% ¼Ö¸®µå¿÷½º¸¦ Ç¥ÁØÀ¸·Î ±³À°À» ÇÕ´Ï´Ù.
 WorldwideÇÏ°Ô °ËÁõµÈ Ç¥ÁØ ¼³°è ToolÀ» ±³À°¿¡ Á¢¸ñÇÔÀ¸·Î½á »ç¿ëÀÚ¿¡°Ô ¼³°è¿¡ ´ëÇÑ »õ·Î¿î ½Ã°¢À» °¡Á®ÁÖ°í ÇâÈÄ ¿£Áö´Ï¾î·Î È°µ¿ÇÒ ¶§ ¾ÈÁ¤ÀûÀÌ°í °¡Àå Áøº¸µÈ ±â¼úÀÇ ¼³°è ToolÀ» »ç¿ëÇÏ´Â °è±â°¡ µË´Ï´Ù.

(»ç)´ëÇѱâ°èÇÐȸ
´ëÇ¥ÀÚ: ±èµ¿È¯ ¤Ó °íÀ¯¹øÈ£ : 220-82-01671 l [06130] ¼­¿ï½Ã °­³²±¸ Å×Çì¶õ·Î 7±æ 22 Çѱ¹°úÇбâ¼úȸ°ü 1°ü 702È£,
Tel : (02) 501 - 3646, 3647, 3648, 5305, 5035, 6046, 6056, 6061 l FAX:(02) 501-3649 l E-mail : ksme@ksme.or.kr
´ã´ç/¹®ÀÇó